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Abstract
Multi-winner voting systems are often applied to
scenarios in which it is desirable that the set of win-
ners represents the different opinions or preferences
of the agents involved in the election. Because of
that, the development of axioms that capture the
idea of representation and the study of multi-winner
voting rules with such axioms is of great interest.
In the context of approval-based committee voting,
Aziz et al. proposed in 2015 at the AAAI Confer-
ence two axioms related to the concept of repre-
sentation. These axioms are called justified repre-
sentation (JR) and extended justified representation
(EJR). In this paper we present new results related
to these axioms. First of all, we close an issue that
was left open by Aziz et al. regarding the max-
imum number of seats for which the Reweighted
Approval Voting satisfies JR. Second, we discuss
a problem in the definition of EJR: a set of candi-
dates can provide perfect representation for a given
election and fail to provide EJR. We propose an al-
ternative axiom which we have called proportional
justified representation (PJR). We prove that PJR
remedies that problem, while providing precisely
the same results as EJR for all the voting systems
that Aziz et al. analyzed in their paper.

1 Introduction
Decision making based on the aggregation of possibly con-
flicting preferences is a central problem in the field of social
choice that has received a considerable amount of attention
from the artificial intelligence research community [Conitzer,
2010; Sandholm, 1999]. A voting system is the usual way of
making collective decisions.

The selection of a single candidate out of several is the
most common scenario in which voting systems are stud-
ied. However, the scenario in which a winning set of can-
didates is selected (multi-winner elections) is also frequent.
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Madrid (project e-Madrid S2013/ICE-2715).

The most typical situation is the election of a parliament or
a committee. Multi-winner elections can also be used by
software agents in scenarios such as deciding on a set of
plans [Elkind et al., 2011] or resource allocation [Skowron
et al., 2013]. Recently, their complexity [Betzler et al.,
2013] and social choice properties [Elkind et al., 2011; 2014;
Aziz et al., 2015] have been the subjects of active research by
the artificial intelligence community.

Multi-winner voting systems are applied often in scenarios
in which the set of winners needs to represent the different
opinions or preferences of the agents involved in the elec-
tion. Due to this, the development of axioms that capture the
idea of representation and the study of multi-winner voting
rules with such axioms is of great interest. In the context of
approval-based committee voting, in 2015 an interesting pa-
per by Aziz et al. [Aziz et al., 2015] presented at the AAAI
Conference proposed two axioms related to the concept of
representation. These axioms are called justified representa-
tion (JR) and extended justified representation (EJR).

Roughly speaking, JR establishes requirements on when a
large enough group of agents deserves to have at least one
of the candidates they approve elected. Similarly, EJR estab-
lishes requirements on when a large enough group of agents
deserves to have several of the candidates approved by them
elected. The formal definitions can be found in [Aziz et al.,
2015] and will be reviewed later in this paper. Both ax-
ioms are interesting, because voting rules that satisfy them
guarantee that a large enough group of agents (even if it
is a minority of the total agents) will receive at least one
(for JR) or at least x (for EJR) representatives that they ap-
prove regardless of any strategic vote followed by the re-
minder agents. Similar axioms have been proposed for multi-
winner voting rules with ranked ballots [Dummet, 1984;
Elkind et al., 2014].

In this paper we present new results related to these ax-
ioms. It was proved in [Aziz et al., 2015] that the Reweighted
Approval Voting (RAV)1 satisfies JR if the number of seats is
2 but it fails JR if the number of seats is greater than or equal
to 10. Whether RAV satisfies JR if the number of seats is
between 3 and 9 was left open. We close this issue here and
prove that RAV satisfies JR if the number of seats is smaller

1The definition of the Reweighted Approval Voting will be re-
viewed later in this paper.



than or equal to 5 and fails JR if the number of seats is greater
than or equal to 6. This is discussed in Section 3.

Second, in Section 4 we discuss a problem in the definition
of EJR: a set of candidates can provide perfect representation
for a given election and fail to provide EJR. We propose an
alternative axiom which we have called proportional justified
representation (PJR). We prove that PJR remedies that prob-
lem, while providing precisely the same results than EJR for
all the voting systems analyzed in the paper of Aziz et al. Sec-
tion 5 deals with some complexity issues related to the topics
discussed in Section 4.

The other Sections in which the paper is organized are Sec-
tion 2, where we introduce some useful notation and briefly
describe the voting systems that we will analyze, and Sec-
tion 6, devoted to discuss the results we have presented along
the paper and to propose future lines of work.

2 Preliminaries
We will use the same notation used in [Aziz et al., 2015], that
we repeat here.

We consider a social choice setting (an election) with a set
of agents (voters) N = {1, . . . , n} and a set of candidates
C = {c1, . . . , cq}. Each agent i ∈ N submits an approval
ballot Ai ⊆ C, which represents the subset of candidates
that she approves of. We refer to the list A = (A1, . . . , An)
of approval ballots as the ballot profile. We will consider
approval-based multi-winner voting rules that take as in-
put (N,C,A, k), where k is a positive integer that satisfies
k ≤ |C|, and return a subset W ⊆ C of size k, which we call
the winning set. We omit N and C from the notation when
they are clear from the context.

We assume that voting rules can output several winning
sets of candidates. We will use the expression “(tied) winning
sets of candidates” to express that the voting rule may return
more than one winning set. We do not make any particular
assumption about how ties are broken.

We adopt the following criterion with respect to axioms
and ties. If a voting rule outputs several (tied) winning sets of
candidates for a certain election and one of such sets would
make the voting rule fail a certain axiom we assume that such
voting rule fails that axiom.

Along this paper we consider the following voting rules,
also discussed in [Aziz et al., 2015] and in [Kilgour, 2010]:
Proportional Approval Voting (PAV) Under PAV, an agent
is assumed to derive an utility of 1 + 1

2 + 1
3 + · · · + 1

j from
a committee that contains exactly j of her approved candi-
dates and the goal is to maximize the sum of the agents’ util-
ities. Formally, the PAV-score of a set W ⊆ C is defined as∑

i∈N r(|W ∩Ai|), where r(p) =
∑p

j=1
1
j , and PAV outputs

the set W ⊆ C of size k with the highest PAV-score.
We can generalize the definition of PAV by using an ar-

bitrary non-increasing score vector in place of (1, 1
2 ,

1
3 , · · · ):

for every vector w = (w1, w2, . . .), where w1, w2, . . . are
non-negative reals, w1 = 1 and w1 ≥ w2 ≥ . . ., we define
a voting rule w-PAV that, given a ballot profile (A1, . . . , An)
and a target number of winners k, returns a set W of size k
with the highest w-PAV score, defined by

∑
i∈N rw(|W ∩

Ai|), where rw(p) =
∑p

j=1 wj .

Reweighted Approval Voting (RAV) RAV is a multi-round
rule that in each round selects a candidate and then reweights
the approvals for the subsequent rounds. Specifically, it starts
by setting W = ∅. Then in round j, j = 1, . . . , k, it computes
the approval-weight of each candidate c as:∑

i|c∈Ai

1

1 + |W ∩Ai|
,

selects a candidate with the highest approval weight, and adds
her to W . Just as for PAV, we can extend the definition of
RAV to score vectors other than (1, 1

2 ,
1
3 , · · · ): every vec-

tor w = (w1, w2, . . .), where w1, w2, . . . are non-negative
reals, w1 = 1 and w1 ≥ w2 ≥ . . . defines a sequential
voting rule w-RAV, which proceeds as RAV except that it
computes the approval weight of a candidate c in round j as∑

i|c∈Ai
w|W∩Ai|+1, where W is the winning set after the

first j − 1 rounds.

3 JR and RAV
First of all, we repeat here the definition of justified represen-
tation (JR), given in [Aziz et al., 2015]:
Justified representation (JR) Given a ballot profile A =
(A1, . . . , An) over a candidate set C and a target commit-
tee size k, k ≤ |C|, we say that a set of candidates W of
size |W | = k provides justified representation for (A, k) if
there does not exist a set of voters (agents) N∗ ⊆ N with
|N∗| ≥ n/k such that

⋂
i∈N∗ Ai 6= ∅ and Ai ∩ W = ∅

for all i ∈ N∗. We say that an approval-based voting
rule satisfies justified representation (JR) if for every profile
A = (A1, . . . , An) and every target committee size k it out-
puts a winning set that provides justified representation for
(A, k).

It was proved in [Aziz et al., 2015] that RAV satisfies JR
for k = 2, but fails it for k ≥ 10. Whether RAV satisfies JR
for k = 3, . . . , 9 was left an open problem. The following
theorem closes this issue.

THEOREM 1 RAV satisfies JR for k ≤ 5 but fails it for k ≥ 6.

Proof: First of all, for a fixed committee size k, we compute
the maximum approval weight of a candidate ck after k − 1
candidates have already been elected. This is done by solving
a linear programming problem, shown below.

Because non-elected candidates do not have any influence
in the approval weight under RAV, we may restrict to the case
in which C = {c1, . . . , ck}. We also assume, without loss of
generality, that the order in which the candidates are elected
is: c1, c2, . . . , ck. In the linear programming problem we will
define constraints that impose such order.

The linear programming problem has a variable xA for
each nonempty candidate subset A ⊆ C. xA is equal to
nA/n, where nA is the number of agents that submit the
approval ballot A. The objective function of the linear pro-
gramming problem is the approval weight of candidate ck
(normalized by the total number of agents n) after candidates
{c1, . . . , ck−1} have already been elected:

maximize
∑
ck∈A

xA

1 + |{c1, . . . , ck−1} ∩A|
.



The constraints of the linear programming problem are as
follows.

1. For any nonempty candidate subset A ⊆ C, xA must be
nonnegative:

xA ≥ 0 for all xA.

2. The total number of votes should be equal to n and
therefore the sum of all xA must be equal to 1 (

∑
A xA =∑

A nA/n = (
∑

A nA)/n = n/n = 1):∑
A

xA = 1.

3. For i = 1, . . . , k − 1, the candidate elected at iteration
i must be ci. That is, the approval weight of candidate ci
at iteration i must be greater than or equal to the approval
weight of any other not yet elected candidate cj , with j =
i+ 1, . . . , k:

∑
A:ci∈A

xA

1 + |{c1, . . . , ci−1} ∩A|

≥
∑

B:cj∈B

xB

1 + |{c1, . . . , ci−1} ∩B|
for i = 1, . . . , k − 1 and for j = i+ 1, . . . , k.

The number of variables grows exponentially with k, but
this is not a problem because we have only to run the linear
programming problem for small values of k. In particular,
for k = 6, the value of the objective function obtained when
running the linear programming problem is 0.204, slightly
greater than 1/(k − 1) = 1/5. Now, we modify the election
obtained with the linear programming problem as follows.
We add a new candidate c7. We also add n/5 agents that
submit {c7}. The total number of agents is now n′ = 6n/5
and since n′/6 = n/5 agents approve c7, according to JR c7
must be in the set of winners. But this does not happen2 be-
cause the approval weight of c6 in round 6 is 0.204n > n/5.
Finally, we adjust the values of xA so that the values of nA

are all nonnegative integers and to avoid ties. We get a coun-
terexample that proves that RAV does not satisfy JR for k = 6
(table 1).

The total number of agents in this example is 5992. Since
1000 agents approve only c7, according to JR c7 should be
in the winning set. But this does not happen: in round 1 c1
is elected with an approval weight of 2000; in round 2 c2
is elected with an approval weight of 1499; in round 3 c3 is
elected with an approval weight of 1220.5; in round 4 c4 is
elected with an approval weight of 1060.33; in round 5 c5
is elected with an approval weight of 1017.67; and finally,
in round 6 c6 is elected with an approval weight of 1017.17.
Ties do not happen.

For k = 7, 8, 9 we simply quote the argument used in [Aziz
et al., 2015] to prove that RAV does not satisfy JR for k > 10
(adapted to the election in table 1):

2Observe that in RAV the approval weights of the candidates
elected at each round are monotonically non-increasing, and there-
fore c7 cannot also be elected in rounds 1, . . . , 5.

“We simply add to the election shown in table 1 k−
6 additional candidates and 1000(k− 6) additional
agents such that for each new candidate there are
1000 agents who approve that candidate only. Note
that we still have 1000 > n/k. RAV will proceed
to select c1, . . . , c6, followed by k − 6 additional
candidates, and c7 or one of the new candidates will
remain unselected.”

For k = 3, 4, 5 the objective function is always smaller
than 1/(k−1). In particular, for k = 5, the objective function
is 0.2389. Therefore, the approach used for k = 6 of adding
an additional candidate would fail. For instance, in the case
of k = 5 if we add a candidate c6 and we add n/4 agents
that submit {c6} (this is the minimum value such that if c6
is not elected the JR rule would be violated), then at round 5
the approval weight of c5 would be 0.2389n which is less that
n/4. Therefore c6 would be elected and the JR rule would not
be violated.

Now, for k = 3, 4, 5, consider an arbitrary ballot profileA.
Let Wk−1 be the set of the first k−1 elected candidates and let
ck−1 the candidate elected at round k− 1. First of all, we are
going to prove that it is not possible that after k− 1 iterations
two disjoint sets of agents N∗1 and N∗2 exist such that for j =
1, 2 it holds that N∗j ⊆ N , |N∗j | ≥ n/k,

⋂
i∈N∗

j
Ai 6= ∅ and

Ai ∩Wk−1 = ∅ for all i ∈ N∗j (if such two sets of agents
could exist at iteration k one candidate approved by one of
the sets could be elected and still the other set would violate
JR). The linear programming problem says that the approval
weight of ck−1 at round k−1 is strictly smaller than 1/(k−2)
multiplied by the total number of agents that approve any of
the candidates in Wk−1 (agents in N∗1 and N∗2 do not approve
any candidate in Wk−1, and therefore they cannot contribute
to the approval weight of ck−1 by any means). That is, the
approval weight of ck−1 if N∗1 and N∗2 would exist would be
strictly smaller than 1

k−2 (n− |N
∗
1 | − |N∗2 |) ≤ 1

k−2 (n−
n
k −

n
k ) = n 1

k−2
k−2
k = n

k . But any candidate in
⋂

i∈N∗
j
Ai would

have an approval weight of at least n
k , and this contradicts the

assumption that ck−1 is the candidate elected at round k − 1.
Suppose now that after k−1 candidates have been elected,

there exists a (unique) set of agents N∗ ⊆ N with |N∗| ≥
n/k such that

⋂
i∈N∗ Ai 6= ∅ and Ai ∩ Wk−1 = ∅ for all

i ∈ N∗. A candidate c in
⋂

i∈N∗ Ai would have an approval
weight of at least n/k.

JR could be violated only if a candidate c′ that is not ap-
proved by at least n

k of the agents in N∗ is elected at iter-
ation k. But once again, the linear programming problem
says that such candidate c′ would have an approval weight
strictly smaller than 1

k−1 multiplied by the total number of
agents that approve c′ or any candidate in Wk−1. There-
fore, the approval weight of c′ has to be strictly smaller than
1

k−1 (n−
n
k ) = n 1

k−1
k−1
k = n

k . �

4 A criticism to EJR and an alternative
proposal

As discussed in [Aziz et al., 2015], the JR axiom estab-
lishes requirements regarding when a large enough group of



A {c1, c2, c4, c5} {c1, c2, c4, c6} {c1, c3, c5} {c1, c3, c6} {c2, c3, c4} {c2, c3, c5} {c2, c5} {c2, c6}
nA 500 500 500 500 222 333 55 389
A {c3, c4} {c3, c5} {c3, c6} {c4} {c5} {c6} {c7}
nA 246 43 154 530 566 454 1000

Table 1: Example of RAV failing JR for k = 6

agents deserves at least one representative. However, JR does
not capture the intuition that large enough groups of agents
should be allocated several representatives. To remedy this,
the authors of [Aziz et al., 2015] propose a new axiom, called
extended justified representation (EJR):
Extended justified representation (EJR) Consider a ballot
profile A = (A1, . . . , An) over a candidate set C, a target
committee size k, k ≤ |C|, and a positive integer `, ` ≤
k. We say that a set of candidates W , |W | = k, provides
`-justified representation for (A, k) if there does not exist a
set of voters (agents) N∗ ⊆ N with |N∗| ≥ `nk such that
|
⋂

i∈N∗ Ai| ≥ `, but |Ai ∩ W | < ` for each i ∈ N∗; we
say that W provides extended justified representation (EJR)
for (A, k) if it provides `-JR for (A, k) for all `, 1 ≤ ` ≤ k.
We say that an approval-based voting rule satisfies `-justified
representation (`-JR) if for every profile A = (A1, . . . , An)
and every target committee size k it outputs a committee that
provides `-JR for (A, k). Finally, we say that a rule satisfies
extended justified representation (EJR) if it satisfies `-JR for
all `, 1 ≤ ` ≤ k.

We are going to show that according to a widely accepted
view of representation, EJR fails as a requirement for propor-
tional/representative voting rules.

The idea of representation has been addressed in several re-
search studies [Monroe, 1995; Dummet, 1984; Black, 1958].
Although different nuances can be found in these studies
there exists a common view that representation aims at select-
ing a committee that reflects as fairly as possible the different
opinions or preferences of the agents involved in the election.
In the context of approval-based voting this idea of ’fairness’
can be expressed as “as most agents as possible must be rep-
resented by a winner that they approve and each winner must
represent approximately the same number of agents”.

Viewed from this perspective, the “ideal” of “perfect” sit-
uation occurs when all the agents involved in an election are
represented by a winner that they approve and each winner
represents exactly the same number of agents. We call this
perfect representation.

DEFINITION 1 Perfect representation (PR) Consider a bal-
lot profile A = (A1, . . . , An) over a candidate set C, and
a target committee size k, k ≤ |C|. We consider only bal-
lot profiles for which a positive integer m exists such that
n = mk. We say that a set of candidates W , |W | = k, pro-
vides perfect representation (PR) if it is possible to partition
the set of agents in k equal size disjoint subsets N1, . . . , Nk

(N = N1 ∪ · · · ∪Nk, Ni ∩Nj = ∅ for i, j = 1, . . . , k, i 6= j,
and |Ni| = m for i = 1, . . . , k), such that it is possible to as-
sign each candidate w in W to one (and only one) subset Ni

so that for all pairs (w,Ni) all the agents in Ni approve their
assigned candidate w. We say that an approval-based voting
rule is a PR voting rule if for every profileA = (A1, . . . , An)

and every target committee size k it does not output any win-
ning set of candidates W that does not provide PR for (A, k)
if at least one set of candidates W ′ that provides PR for
(A, k) exists.

Consider the following example. Let k = 4. We have 6
candidates, C = {c1, . . . , c6}. 8 agents submit the follow-
ing approval ballots. A1 = {c1}, A2 = {c2}, A3 = {c3},
A4 = {c4}, A5 = {c1, c5, c6}, A6 = {c2, c5, c6}, A7 =
{c3, c5, c6} and A8 = {c4, c5, c6}. Now consider the fol-
lowing possible set of winners W = {c1, c2, c3, c4}. Clearly
W provides PR because we can partition the set of agents
in 4 disjoint subsets of size 2 (N1 = {1, 5}, N2 = {2, 6},
N3 = {3, 7} and N4 = {4, 8}) such that it is possible to as-
sign each candidate in W to one (and only one) subset so that
all the agents approve their assigned candidate (assign c1 to
N1, c2 to N2, c3 to N3 and c4 to N4). However, W does not
provide EJR. In fact, it does not even provide 2-JR, because
for agents 5, 6, 7 and 8 we have |

⋂8
i=5 Ai| = |{c5, c6}| = 2

and |{5, 6, 7, 8}| = 4 ≥ 2n
k = 2 8

4 = 4, but |Ai ∩W | = 1,
for i = 5, . . . , 8. However, observe that |W ∩

⋃8
i=5 Ai| = 4,

that is, agents 5, 6, 7 and 8 achieve together the number of
winners they deserve. Observe also that for this election W
is the only possible set of winners that provides PR because
for any other possible set of winners there always exists at
least one agent that does not approve any of the winners. The
following theorem and corollary follow immediately.
THEOREM 2 There exist ballot profilesA and target commit-
tee sizes k for which sets of candidates that provide PR exist
but all of them fail to provide EJR (even 2-JR).
COROLLARY 1 PR voting rules fail EJR (even 2-JR).

Voting rules that aim at achieving representativeness
should be expected to search for sets of winners that are close
to PR. Such voting rules can fail EJR because they output a
set of winners for certain election that do not provide EJR de-
spite such set of winners provide PR. To remedy this problem
we propose the following alternative axiom:
DEFINITION 2 Proportional justified representation (PJR)
Consider a ballot profileA = (A1, . . . , An) over a candidate
set C, a target committee size k, k ≤ |C|. We say that a set
of candidates W , |W | = k, provides proportional justified
representation (PJR) for (A, k) if there does not exist a set of
agents N∗ ⊆ N and a positive integer ` with |N∗| ≥ `nk such
that |

⋂
i∈N∗ Ai| ≥ `, but |W ∩(

⋃
i∈N∗ Ai)| < `. We say that

an approval-based voting rule satisfies proportional justified
representation (PJR) if for every profile A = (A1, . . . , An)
and every target committee size k it outputs a committee that
provides PJR for (A, k).

Sets of candidates that provide PR also provide PJR as
proved by the following Theorem:



THEOREM 3 For every profile A = (A1, . . . , An) and every
target committee size k, if a set of candidates W , |W | = k
provides PR, then W provides also PJR.

Proof: Observe that because W provides PR, n/k = m
where m is a positive integer. Consider any set of agents
N∗ ⊆ N and any positive integer ` such that |N∗| ≥ `nk =
`m. Because W provides PR, k disjoint subsets N1, . . . , Nk

of size m exist such that N = N1 ∪ · · · ∪ Nk and that it is
possible to assign each candidate w in W to one (and only
one) subset Ni so that for all pairs (w,Ni) all the agents in
Ni approve their assigned candidate w. Because the size of
N∗ is greater than or equal to `m and the size of all subsets
Ni is equal to m, the number of subsets Ni that have a com-
mon agent with N∗ is at least `. But since for each Ni there
is a different candidate in W that is approved by all agents in
Ni, the number of candidates in W approved by some agent
in N∗ must be greater than or equal to `. �

We now study the relation of PJR with JR and EJR, and
whether RAV and PAV (and their variations) satisfy PJR.

A voting rule that satisfies PJR has to satisfy JR because
for any set of agents N∗ ⊆ N such that |N∗| ≥ n

k and⋂
i∈N∗ Ai 6= ∅ PJR imposes that the set of winners W holds

that |W ∩ (
⋃

i∈N∗ Ai)| ≥ 1 and therefore, W ∩Ai 6= ∅ for at
least one Ai. Therefore:
LEMMA 1 PJR implies JR.

A voting rule that satisfies EJR has to satisfy PJR because
for any set of agents N∗ ⊆ N and any positive integer `
such that |N∗| ≥ `nk and |

⋂
i∈N∗ Ai| ≥ `, EJR imposes that

certain j ∈ N∗ has to exist such that |Aj ∩ W | ≥ ` and
therefore it has to be |W ∩ (

⋃
i∈N∗ Ai)| ≥ `. Therefore:

LEMMA 2 EJR implies PJR.

As discussed in [Aziz et al., 2015] and also in the previous
Section RAV does not satisfy JR, and therefore the following
corollary follows immediately from Lemma 1:
COROLLARY 2 RAV does not satisfy PJR.

Similarly, in [Aziz et al., 2015] it is proved that PAV satis-
fies EJR, and therefore, from Lemma 2 it follows:
COROLLARY 3 PAV satisfies PJR.

For w-RAV we have the following result.
LEMMA 3 w-RAV does not satisfy PJR.

Proof: For every vector w = (w1, w2, . . . ) with w2 > 0, a
Theorem in [Aziz et al., 2015] proves that w-RAV does not
satisfy JR. Therefore, in such cases w-RAV does not satisfy
PJR either.

The only case that remains is for w0 = (1, 0, . . . , 0).
For w0 consider the following election. Let k = 3, C =
{c1, c2, c3, c4}. 6 agents submit the following ballots: 4
agents submit {c1, c2}, one agent submits {c3} and the last
agent submits {c4}. The set of winners W that w0-RAV out-
puts for this election is: one of c1 or c2 plus c3 and c4. This
violates PJR because according to PJR both {c1} and {c2}
would have to be elected (let N∗ be the four agents that sub-
mitted {c1, c2}, and ` = 2, we have |N∗| = 4 = 2n

k and
|
⋂

i∈N∗ Ai| = |{c1, c2}| = 2). �
Finally, for w-PAV we have the following result.

LEMMA 4 For every weight vector w 6= (1, 1
2 ,

1
3 , . . . ), the

rule w-PAV does not satisfy PJR.

For the sake of brevity we omit the details of the proof of
this Lemma, but it can be derived directly from the equivalent
proof for EJR in [Aziz et al., 2015]. First, a Lemma in [Aziz
et al., 2015] proves that for a weight vector w such that wj >
1
j for some j > 1, w-PAV fails JR. Therefore, in such cases
w-PAV fails also PJR.

Second, for a weight vector w such that wj < 1
j for some

j > 1, another Lemma in [Aziz et al., 2015] shows an elec-
tion in which a given set of candidates C0 with |C0| = j is
approved by j n

k agents but w-PAV elects only j − 1 candi-
dates of C0. Such an election proves that for a weight vector
w such that wj <

1
j for some j > 1, w-PAV does not satisfy

PJR.
In summary, we have shown that while PJR has the advan-

tages discussed at the beginning of this Section (Theorems 2
and 3 and corollary 1), it provides the same results for RAV,
PAV, w-RAV and w-PAV as EJR: PAV satisfies both axioms
and all the other rules fail to satisfy both PJR and EJR.

We have shown that any voting rule that satisfies EJR sat-
isfies also PJR. It may be wondered whether voting rules that
satisfy PJR but not EJR exist. The following (naive) voting
rule solves this issue.

DEFINITION 3 PR-PAV For every profileA = (A1, . . . , An)
and every target committee size k, if sets of candidates W
that provide PR exist, then PR-PAV outputs (tied) all the sets
of candidates W that provide PR. Otherwise, PR-PAV outputs
the same sets of candidates as PAV.

LEMMA 5 PR-PAV satisfies PJR but fails EJR.

Proof: By corollary 1, PR-PAV fails EJR. By Theorem 3,
when sets of candidates W that provide PR exist for (A, k),
PR-PAV outputs sets of candidates that provide PJR. By
corollary 3 when sets of candidates W that provide PR do not
exist, PR-PAV outputs sets of candidates that provide PJR. Fi-
nally, because PR-PAV always outputs sets of candidates that
provide PJR, PR-PAV satisfies PJR. �

5 Complexity issues
For PR voting rules we have the following negative result.

THEOREM 4 If P 6= NP, then PR voting rules cannot be com-
puted in polynomial time.

Proof: We borrow a proof by Procaccia et al. [Procaccia
et al., 2008]. Following the ideas exposed in that proof
we show a polynomial-time reduction from the EXACT 3-
COVER (X3C) problem to the problem of determining a win-
ning set of candidates with any PR voting rule. The X3C
problem is known to be NP-Complete [Garey and Johnson,
1979]. Therefore such polynomial-time reduction proves the
Theorem.

First, we repeat here the definition of the X3C problem
given in [Procaccia et al., 2008].

In the X3C problem we are given a set U of n points such
that n is divisible by 3, and a collection of r subsets of U ,
F = {F1, . . . , Fr}, each of cardinality 3, i.e., for all j, |Fj | =



3. We are asked whether it is possible to find n/3 disjoint
subsets in F such that their union covers the entire set U .

Given an instance of the X3C problem, we map it to a ballot
profile, a set of candidates, and a target committee size as
follows. U is the set of agents, F is the set of candidates, and
k = n/3. Each agent u ∈ U approves all the candidates Fi

such that u ∈ Fi in the original instance of the X3C problem.
Observe that according to the definition of X3C n/k is the
positive integer 3.

For any PR voting rule pick any winning set of candidates
W that the voting rule outputs for the election described in
the previous paragraph. If a set of candidates that provides
PR exist, then by the definition of PR voting rule the winning
set of candidates has to provide PR. If the winning set of can-
didates provides PR, it is possible to partition the set of agents
in n/3 disjoint subsets of 3 agents, such that it is possible to
assign each candidate w in W to one (and only one) subset
so that all agents approve their assigned candidate w. This
assignment solves the original X3C problem. If the winning
set does not provide PR then the corresponding instance of
the X3C problem does not have a solution.

For additional details we refer to [Procaccia et al., 2008].
�

COROLLARY 4 If P 6= NP, then PR-PAV cannot be computed
in polynomial time.

PAV can neither be computed in polynomial time as shown
by Aziz et al. [Aziz et al., 2014].

Observe that Theorem 4 does not at all imply that any
approval-based voting rule that satisfies PJR has to be non-
polynomial. Observe also that Theorem 4 does not even im-
ply that it would be more difficult to find a polynomial vot-
ing rule that satisfies PJR than to find a polynomial voting
rule that satisfies EJR. Since EJR implies PJR (Lemma 2)
any approval-based voting rule that satisfies EJR and can be
computed in polynomial time (if such rule exists) would be
also an approval-based voting rule that satisfies PJR and can
be computed in polynomial time. All that we know is that
any voting rule that can be computed in polynomial time and
that satisfies PJR (or EJR) will output for some elections win-
ning sets of candidates that do not provide PR even if sets of
candidates that provide PR exist.

6 Discussion, conclusions and future lines of
work

The development of axioms that capture the idea of represen-
tation and the study of multi-winner voting rules with such
axioms is of great interest. We consider that justified repre-
sentation is a very interesting axiom, and that it must be a
necessary requirement (maybe not sufficient) for considering
the use of an approval-based multi-winner voting rule when
it is desired that the winning set represents the different opin-
ions or preferences of the agents involved in the election.

As discussed in [Aziz et al., 2015] it is useful to know for
which values of k a multi-winner voting rule satisfies JR. For
that reason, we have proved that RAV satisfies JR for k ≤ 5
and fails it for k ≥ 6. Therefore, for elections with a rela-
tively small number of seats to allocate (≥ 6) RAV should
not be used when JR is considered a desirable property.

However, we believe that the definition of extended jus-
tified representation is much more questionable. We have
shown that a set of candidates can provide perfect represen-
tation for a given profile A and target committee size k, and
despite that, fail to provide EJR. We have proposed an al-
ternative axiom, which we have called proportional justified
representation and we have shown that it does not suffer from
this problem and that it provides the same results than EJR for
all the multi-winner voting rules that were analyzed in [Aziz
et al., 2015]3.

It can be wondered which is the point in proposing a new
axiom that provides the same results as EJR for almost all
the multi-winner voting rules that have been analyzed (except
PR-PAV). We insist on our argument: we believe that it is not
reasonable to disqualify a multi-winner voting rule (from the
point of view of representation) because it outputs in certain
cases sets of candidates that do not provide EJR, if in such
cases the winning sets provide PR.

We believe that another argument for PJR is that it cap-
tures better the idea of when a large enough group of agents
should be allocated several representatives, because for PJR
it is enough that the required number of representatives is
achieved counting all the candidates that are approved at least
by one agent in the group, while EJR requires one agent in the
group to approve the required number of representatives in
the winning set. Moreover, we believe that this requirement
that “one agent in the group approves the required number of
representatives in the winning set” is unjustified: one should
expect that each candidate in the winning set should represent
many agents, and not that an agent is represented by several
candidates. Of course, when a group of agents agree in ap-
proving the same set of candidates, and the group is large
enough to deserve several representatives, both PJR and EJR
require that each of the agents in such group is represented
by several (and the same) representatives.

As a final remark, we agree with the authors of [Aziz et
al., 2015] in that it would be very interesting to identify a
voting rule that satisfies PJR (or EJR) but can be computed
efficiently (in polynomial time). Unfortunately, the only two
rules that have been identified so far that satisfy PJR are PAV
and PR-PAV, and none of them can be computed in polyno-
mial time. Voting rules that cannot be computed in polyno-
mial time are interesting from a theoretical point of view. For
instance, the existence of PAV and PR-PAV is a proof that it is
possible to develop multi-winner voting rules that satisfy PJR.
However, as discussed in [Bartholdi III et al., 1989], voting
rules that cannot be computed in polynomial time are mostly
useless in practice: they can be used only in very small elec-
tions. We remark that the results that we have presented in
this paper do not at all exclude the possibility to find a vot-
ing rule that satisfies PJR and can be computed in polynomial
time. We plan to address this issue in our future work.

3It should be noted that in [Aziz et al., 2015] other approval-
based multi-winner voting rules (surveyed in [Kilgour, 2010]) are
analyzed, in addition to PAV, RAV and their variations. All these
other voting rules fail JR, and therefore, they also fail EJR and PJR.
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