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Abstract

A Conditional Preference Network (CP-net) is a
widely used graphical model for expressing qual-
itative and conditional preferences over attributes
values. CP-nets have been recently extended to
Tradeoffs-enhanced Conditional Preference Net-
works (TCP-nets) in order to capture the relative
importance among attributes. In this paper, we ex-
tend the TCP-net to hard constraints and call the
new proposed model Constrained TCP-net (CTCP-
net). More precisely, the CTCP-net has the ability
to represent and manage a given application under
constraints as well as qualitative and conditional
preferences over the attributes and their values.
Solving the CTCP-net consists of finding the set
of Pareto optimal solutions satisfying all the con-
straints and maximizing all the preferences. This
task is addressed in this paper using a variant of
the backtrack search algorithm enhanced with con-
straint propagation and variable ordering heuristics.

Keywords. Constraint Satisfaction, Qualitative Preferences,
CP-nets, TCP-nets.

1 Introduction

Preference elicitation, representation and reasoning plays an
important role in many real life applications, such as collab-
orative filtering, product configuration, automated decision
making systems and recommender systems. In most cases,
helping users to make a decision efficiently and correctly,
based on a set of preferences, is important as discussed by
researchers in the field.

Some of the past research works have focused on the quan-
titative representation of preferences through a utility func-
tion based on the well-known Multi-Attribute Utility The-
ory(MAUT) [Keeney and Raiffa, 1993; Sadaoui and Shil.,
2014] or the C-Semiring based CSP (SCSP) and the Valued
CSP (VCSP) based on a totally ordered commutative monoid
[Bistarelli et al., 1999]. It is however more natural to de-
scribe preferences in a qualitative way. In this regard, many
logical and graphical compact preference representation lan-
guages and formalisms have been proposed [Baier and Mcll-
raith, 2009; Kaci, 2011]. In particular, the Conditional Prefer-
ence Networks(CP-Net)[Boutilier et al., 2004] is an intuitive

qualitative graphical model for representing qualitative pref-
erence information to reflect the conditional preference de-
pendency under ceteris paribus (all else being equal) interpre-
tation. The Tradeoffs-enhanced Conditional Preference Net-
work (TCP-net)[Brafman et al., 2006] is introduced by ex-
tending CP-nets, allowing users to describe their relative im-
portance on variables, thus improving the limitations of CP-
Nets. In this paper, we extend the TCP-net with constraints,
producing a more expressive model, called Constrained TCP-
net (CTCP-net), to address problems under both constraints
and qualitative preferences. These latter can be conditional
and are defined on both attributes and their values. Given
a problem represented as a CTCP-net, one important task is
to look for a set of Pareto optimal outcomes satisfying all
the constraints and optimizing all the qualitative preferences.
This is a hard to solve problem that we tackle using a vari-
ant of backtrack search improved with constraint propagation
techniques [Dechter, 2003]. These latter techniques will act
as a filtering process that will be applied before and during the
backtrack search to enhance the efficiency of this latter by re-
ducing the size of the search space. In order to assess the time
performance of our proposed solving algorithm, we have con-
ducted several experiments on problem instances taken from
Kjiji.ca'. The results are very promising and demonstrate the
efficiency of our method thanks to the constraint propagation
techniques.

Note that CP-nets have been extended in the past in or-
der to consider hard constraints. In [Boutilier et al., 2001],
the CP-net has been augmented to a new model, called con-
strained CP-net, in order to include hard constraints. A gen-
eralized version of this solving method has been proposed in
[Boerkoel Jr er al., 2010], where a hybrid parameterized ap-
proach (“alternative algorithms”) allows the solving of the
constrained CP-net with the flexibility of trading solution
quality for computational time. Recently, the constrained CP-
net has been solved in [Alanazi and Mouhoub, 2016] using
a powerful backtrack search algorithm including constraint
propagation and variable ordering heuristics. Another ap-
proach for solving constrained CP-nets consists of converting
the CP-net into a set of hard constraints that are then added to
the initial set of (hard and soft) constraints of the problem to
solve. The solutions to the newly obtained constrained prob-
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lem are the optimal solutions of the initial constrained CP-net
[Prestwich et al., 2005]. This approach is often called a cou-
pled approach as opposed to the above method [Boutilier et
al., 2001] and its generalization [Boerkoel Jr et al., 2010],
referred to as decoupled approaches, since in these two ap-
proaches constraints and preferences are modeled separately.
In [Domshlak et al., 2009], a new framework based on CP-
nets and soft constraints was proposed in order to manage
both hard and soft constraints as well as conditional pref-
erences. Here, the CP-net representing conditional prefer-
ences is first approximated via soft constraints into an SCSP
which will then be completed with other hard and soft con-
straints. Note that, since this is an approximation method,
the Pareto optimal solutions returned are not guaranteed to be
optimal. Comparing to the above contributions, our proposed
work considers relative importance between variables and
deals with conditional constraints rather then general hard
constraints.

The rest of the paper is organized as follows. Section 2
reviews the related research work on constraints and prefer-
ences representation and reasoning. Basic concepts, CSPs,
CP-Nets and TCP-nets are discussed in details in this sec-
tion. In Section 3, our proposed CTCP-net model is defined
together with its solving techniques. Section 4 is dedicated
to the experiments we conducted to assess the time perfor-
mance of our solving method. Finally, section 5 concludes
this research work and lists some possible future works.

2 Background
2.1 CSPs

A Constraint Network (CN) includes a finite set of variables
with finite domains, and a finite set of constraints restrict-
ing the possible combinations of variable values [Dechter,
2003]. Given a CN, a Constraint Satisfaction Problem (CSP)
consists of finding a set of assigned values to variables that
satisfy all the constraints. A CSP is known to be an NP-
hard problem in general?, and is solved with a backtrack
search algorithm of exponential time cost. In order to reduce
this cost in practice, constraint propagation techniques have
been proposed [Dechter, 2003; Haralick and Elliott, 1980;
Mackworth, 1977]. The idea here is to reduce the size of the
search space before and during the backtrack search. In the
past four decades the CSP framework, with its solving tech-
niques, has demonstrated its ability to efficiently model and
solve a large size real-life applications, such as scheduling
and planning problems, configuration, bioinformatics, vehi-
cle routing and scene analysis [Meseguer et al., 2006].

2.2 CP-Nets and TCP-nets

A Conditional Preference Network (CP-Net) [Boutilier et al.,
2004] is a graphical model for representing and reasoning on
conditional ceteris paribus preferences in a compact, intuitive
and structural manner. This model allows users to express
their preferences in a qualitative way, which is more natural

There are special cases where CSPs are solved in polynomial
time, for instance, the case where a CSP network is a tree [Haralick
and Elliott, 1980; Mackworth and Freuder, 1985].

and comfortable for users compared to quantitative descrip-
tions. Non-conditional preferential independence is used to
represent the fact that customers’ preference relation over val-
ues of a given feature is the same regardless of the values
given to other features [Keeney and Raiffa, 1993]. This can
be formalized as shown in Definition 1. Here, X and Y are
two given variables, each defined over a discrete and a finite
domain (denoted respectively as D(X) and D(Y)) of values
(denoted respectively as x; and y;).

Definition 1 [Brafman et al., 2006] Let x1, 25 € D(X) for
some X C V and y1,y2 € DY), where Y =V — X,
We say that X is preferentially independent of Y iff, for all
T1,T2,Y1, Y2 we have that x1y1 = Tay1 < T1Yy2 = Tayo.

In reality, customers’ preferences are much more complex.
In most cases, the preferential independence relies on a cer-
tain value of other features, hence we call it conditionally
preferentially independent and express it through the follow-
ing definition.

Definition 2 [Brafiman et al., 2006] Let X,Y and Z be a
partition of V and let z € D(Z). X is conditionally prefer-
entially independent of Y given z iff, for all x1,x2,y1, Y2 we
have that x1y12 > Toy12 <= T1Y2Z > ToY2Z

Moreover, we can say that X is conditionally preferentially
independent of Y under Z if the above formula is satisfied
for every value of Z. In order to illustrate the different CP-net
components, let us consider the following example.

Example 1

We have an online shopping system where the goal is to pur-
chase a laptop according to the buyer preferences. We assume
here that the buyer is interested in only five attributes: Color,
Brand, Weight, RAM and Price. According to sellers’ offers,
the following range of possible values (domains) are deduced
for each attribute:

Dpgrand = {Dell, Sony, Toshiba}

Dweignt(Ib) = {2.2, 3.5, 4}

Dran(GB) = {1, 2, 4}

Dprice($) = {680, 750, 890, 1100}

Dcoior = {Black, White, Silver}

Next, the buyer submits the following preferences for the
five attributes. (p1) The buyer prefers the highest RAM size.
(p2) The buyer prefers the lightest laptop.

(p3) The buyer prefers the cheapest laptop.

(p4) The buyer prefers White more than Silver and Silver
more than Black if Brand is Dell. Otherwise, he prefers Black
more than Silver and Silver more than White.

(pS5) The buyer prefers Dell more than Sony and Sony more
than Toshiba if Price is more than $900 and RAM is 2GB.
Otherwise, he prefers Sony more than Toshiba and Toshiba
more than Dell.

Figure 1 illustrates the representation of the problem in Ex-
ample 1 with a CP-net. The three attributes, Weight, RAM
and Price, do not depend on any other attribute. Therefore,
they have an unconditional order of their values. The pref-
erences for Brand and Color values depend on the values as-
signed to their respective parents. For example, if Price is



$1100 and RAM is 2 GB, the buyer’s order over Brand values
is Dell > Sony > Toshiba while for other Price and RAM
values, the preference order is Sony > Toshiba > Dell.
Dependencies are represented with arrows going from par-
ents to children.

Given a CP-net, a sweep forward procedure [Boutilier et
al., 2004] can be used to find the optimal outcome. In our ex-
ample 1, the optimal outcome is: [680,4, Sony, 2.2, Black]
(shown in underlined bold in Figure 1).

680 > 750 > 890 > 1100

4>2>1

1100 and 2: Dell > Sony > Toshiba

8Q: Brand > Weight
otherwise: Sony > Toshiba > Ddll otherw

e: Weight > Brand

Dell: White > Silver > Black
otherwise: Black > Silver > White

Figure 1: The CP-net and the TCP-net for Examples 1 and
2 respectively (here, the TCP-net extends the CP-net with an
arc from Brand to Weight).

Example 2

Let us consider again Example 1 and assume that the buyer
wants to add the following preference: “Brand is more impor-
tant than Weight if Price is less than $700 otherwise Weight
is more important than Brand”.

The CP-net cannot capture this type of preference as it does
not handle preferences over the attributes. In order to address
this limitation, tradeoffs-enhanced CP-nets (TCP-nets) have
been proposed by extending the relative preferences to the
variables themselves through the non-conditional and condi-
tional relative importance properties [Brafman ez al., 2006]
defined below. Figure 1 illustrates the TCP-net corresponding
to Example 1 with the new preference we mentioned above.

More formally, the TCP-net extends the CP-net model with
the following two definitions respectively related to the no-
tions of unconditional and conditional relative importance.

Definition 3 [Brafman et al., 2006] Let a pair of variables
X and Y be mutually preferentially independent given W =
V — X, Y. We say that X is more important than'Y, denoted
by X 'Y, if for every assignment w € D(W) and for every
zi,%; € D(X),Ya,yp € D(Y), such that z; > x; given w,
we have that: T;yqw = T;ypw.

The above definition also works if , > y, given w. In gen-
eral, customers describe their preference under certain condi-
tions, hence the conditional relative importance is more com-
monly used.

Definition 4 [Brafman et al., 2006]

Let X and Y be a pair of variables from V, and let Z C
W =V — X,Y. We say that X is more important than
Y given z € D(Z) iff, for every assignment w' on W' =
V —({X,Y}UZ) we have: z;y,zw" = x;ypzw’.

whenever ©; - x; given zw'. We denote this relation by
XvzY. Finally, if for some z € D(Z) we have either X>2Y,
or Y >y X, then we say that the relative importance of X and
Y is conditioned on Z, and write RI(X,Y |Z).

Accordingly, if for some z € Z, we can also find Y >z X,
then we can conclude that the relative importance of X and
Y relies on Z, denoted as RI(X,Y | Z).

3 Constrained TCP-nets (CTCP-nets)

3.1 Definitions

Definition 5 A conditional constraint cc; is defined as fol-
lows.

. X rely, am,

)

Y relpmi1 b <= cc; = X5 rely ay and|or ..

where rel; € {=,#,<,>,=<,>}andm > 1.

We denote by varsCd(cc;) the set of variables in the con-
dition of cc; and by Conclusion(cc;) the set of variables in
the conclusion part (in our case this set is reduced to one
element).

Definition 6 Following the definition of the TCP-nets in
[Brafman et al., 2006] we define the CTCP-net T as a tuple
<G,CC,CPI1,CI,CPT,CIT >, where:

1 G is the set of nodes corresponding to a set of problem
variables {X1,Xs, ..., X, }. Each variable X; is de-
fined over a domain D(X;) of discrete values.

2 CC is the set of conditional constraint arcs (denoted as

cc—ares) . A cc—arc[X;, X;] expresses the fact that
X is restricted by a given condition on X;’s values.
This basically means that there exists a conditional con-
straint cc where X; € varsCd(cc;) and X is the vari-
able present in the conclusion of cc.

3 CP is the set of conditional preference arcs (denoted as
cp—arcs) corresponding to conditional preferences. A

cp—arc < X;, X; > means that the preferences over
the values of X; depend on the actual value of X;.

4 I is the set of non-conditional relative importance arcs
(denoted as i—arcs) corresponding to non-conditional

relative importance relations. An i—arc (X;, X;) cor-
responds to the following relative importance: X; > X
denoting that X; is more important than X ;. This basi-
cally means that X; can be assigned a value if and only
if X; has already been assigned a value.

5 C1 is the set of undirected conditional relative impor-
tance arcs (denoted as ci—arc) corresponding to condi-
—_—

tional relative importance relations. A ci—arc(X;, X;)
is in T iff there is RZ(X;, X;|Z) for some Z C G —
{Xi, X,}. This basically means that X; and X; can be
assigned a value if and only if Z has already been as-

signed a value. Specifically, every i—arc(X;, X;) can



680 > 750 > 890 > 1100

Price > 700 < RAM > 2

Price

1100 and 2: Dell > Sony > Toshiba
otherwise: Sony > Toshiba > Dell

Dell: W hite > Silver > Black

otherwise: Black > Silver > White

22>35>14

Brand # Sony <= Weight < 3

Weight

80:Brand > Weight
ot ise: Weight > B

Figure 2: The constrained TCP-net for Example 3.

be represented as RLZ(X;, X;, 9). Here, Z is called the
selector set of (X;, X ;) and is denoted by S(X;, X;).

7 CPT associates a Conditional Preference Table (CPT)
with every node X € G. CPT(X) is a mapping from
D(Pa(X)) (ie., assignments to X’s parents nodes) to a
partial order over D(X). Pa(X) is X's conditional
(dependent) variable.

8 CIT associates with every ci—arc v = (X;,X;), a
(possibly partial) mapping CIT(vy) from D(S(X;, X;)
to an order over the set {X;, X }.

Note that the sub tuple < CP,I,CI,CPT,CIT > cor-
responds to a TCP-net. Moreover, if the sets I and C'I are
empty then we have a CP-Net. Let us illustrate the different
components of our CTCP-net through the following example.

Example 3

Let us consider our Example 2 and assume the buyer submits
the following constraints.

(cl) If Weight < 3 Ib, the buyer does not buy Sony.

(c2) If RAM > 2 GB then Price should be higher than $700.

Figure 2 illustrates the representation of the problem in
Example 3 with the constrained TCP-net we propose. Con-
straints restrict the values that some attributes can simultane-
ously take and are represented by edges between the nodes
sharing the constraints. There are two Pareto optimal out-
comes induced by the constrained TCP-net of our example:
[680,2, Sony, 3.5, Black] and [750,4, Sony, 3.5, Black].
Finding the Pareto optimal outcomes can be achieved using
the backtrack search algorithm we will present in the next
Section. This algorithm has the ability to return the optimal
solutions in an efficient way thanks to the constraint propaga-
tion techniques and variable ordering heuristics we have used.

3.2 Constraint Propagation for CTCP-nets

The following is the general procedure we use to manage con-
ditional constraints as defined in the previous Section. Here,
m is the number of relations in the condition of the given con-
ditional constraint.

e m=1. This is a conditional constraint involving one vari-
able in the premise of the condition. We process it as a
form of binary constraint using Algorithm 3 in the pre-
processing step to remove the inconsistent values. Note
that Algorithm 3 enforces directional arc consistency be-
tween the variable in the premise and the one in the con-
clusion of the conditional constraint. For instance, if the
conditional constraint is X # a = Y # b and value
a has been removed from the domain of X then b has to
be removed from the domain of Y. As well, the condi-
tional constraint is also used to propagate the effect of
an assignment during the backtrack search following the
look ahead strategy. For instance, if the conditional con-
straintis X = a = Y > band the current assignment
is X = a then all values from the domain of Y that are
less than b should be removed.

e m > 1. This is a conditional constraint involving more
than one relation in the condition of the conditional con-
straint. We process it similarly to the case where m = 1
but using generalized directional arc consistency as we
are dealing with a form of n-ary constraint in this par-
ticular case. For instance, let us assume we have the
following conditional constraint: A # a or B # b =
C < c then if a is removed from the domain of A or
b is removed from the domain of B then all the values
from C’s domain that are greater or equal to ¢ should be
removed. This propagation can happen in the pre pro-
cessing stage as well as the search phase. For example,
if during the backtrack search A (or B) is assigned a
value other than a (or b) then C' cannot be assigned a
value that is greater or equal to c.



Algorithm CTCP-GAC
1. Givena CTCP-net7 =< G,CC,CP,I1,CI,CCT,CPT,CIT >
(G: set of variables, CC: set of conditional constraints)
Q « {(i,4) |1 € CC Nj € Conclusion(i)}
While Q # 0 Do
Q +— Q—{(i,4)}
If REVISE(i, j) Then
If Domain(j) = O Then return false
Q<+~ QU{(k, )| ke CCAJjEvarsCd(k)
Al € Conclusion(k) Nk #iNj#I1}
End-If
10.  End-While
11. Return true

O %N R LN

Function REVISE(i, j)
(REVISE for bound consistency)
1. domainSize < |Domain(j)|
2. While |[ Domain(j)| > 0
A-seekSupportArc(i, j, min(j)) Do
3. remove min(j) from Domain(j)
4. End-While
5. While |[Domain(j)| > 1
AN-seekSupportArc(i, j, maz(j)) Do
6. remove max(j) from Domain(j)
7. End-While
8. Return domainSize # |Domain(j)|

Function REVISE(i,j)
(REVISE for arc consistency)
I.REVISE <« false
2.nbElts « |Domain(j)|

4. If ~seekSupport(i, j, a) Then
5. remove a from Domain(j)

6. REVISE < true

7. End-If

8. End-For

9. Return Revise

Figure 3: CTCP-GAC algorithm for CTCP-nets.

Arc consistency is enforced with an arc consistency
algorithm [Mackworth, 1977; Dechter, 2003]. Since we are
dealing with n-ary constraints, we use an adapted version of
the Generalized Arc Consistency (GAC) algorithm presented
in [Mouhoub and Feng, 2009]. This latter is a revised
version of the original GAC algorithm proposed in [Lecoutre
and Radoslaw, 2006] as well as a modified version of the
bound consistency algorithm for discrete CSPs in the case
of inequality relations [Lecoutre and Vion, 2005]. More
precisely, bounds consistency is first used through inequality
relations to reduce the bounds of the different domains of
variables. The adapted GAC is then used to further reduce
the domains of the variables. Let us describe now the details
of our method. The modified GAC algorithm that we call
CTCP-GAC is described in figure 3. This algorithm enforces
arc consistency on all variables domains. CTCP-GAC starts
with all possible pairs (4,j) where j is a variable involved
by the constraint ¢. Each pair is then processed, through the
function REVISE as follows. Each value v of the domain
of 7 should have a value supporting it (such that the constraint
7 is satisfied) on the domain on every variable involved by
1 otherwise v will be removed. If there is a change in the
domain of j (after removing values without support) after
calling the function REVISE then this change should be
propagated to all the other variables sharing a constraint with
7. When used as a bound consistency algorithm, cc involves
inequality relations and the RE'V I SE function (the function
that does the actual revision of the domains) is defined as
shown in figure 3 [Lecoutre and Vion, 2005]. In the other
case, the REVISE function is defined as shown in the
bottom right of figure 3 [Lecoutre and Radoslaw, 2006]. In
the function REVISE (for bound consistency) of figure
3, the function seekSupportArc (respectively the function
seekSupport of REVISE for semantic constraints in
figure 3) is called to find a support for a given variable with
a particular value. For instance when called in line 2 of
the function REV ISE for bound consistency, the function
seekSupport Arc looks, starting from the lower bound of j’s

3. For each value a € Domain(j) Do

domain, for the first value that has a support in ¢’s domain.
When doing so, any value not supported will be removed.

After enforcing arc consistency in the preprocessing stage
of our proposed solving method, we run a backrack search
algorithm with a look ahead strategy [Dechter, 2003] to find
the Pareto optimal solutions of a given CTCP-net. In order to
improve the time performance of the backtrack search, vari-
ables are first ordered following the most constrained vari-
ables first heuristic [Mouhoub and Jashmi, 2011]. Some of
these variables will then be reordered according to the de-
pendencies imposed by the CTCP-net. In this regard, vari-
ables need to be sorted after their respective parents in the
corresponding conditional constraint, conditional preference
or unconditional relative importance relation. In addition to
this static variable ordering that occurs before the backtrack
search, some variables are rearranged dynamically during the
backtrack search according to the conditional relative impor-
tance relations (anytime the variable, the relative importance
relies on, is assigned a particular value). Variables values are
ordered according to the CPTs. Note that, like for variable
ordering, some of these orders depend on values assigned to
some other variables and this is done dynamically during the
backtrack search. We adopt the Forward Check strategy [Har-
alick and Elliott, 1980] as the constraint propagation tech-
nique during the backtrack search. Anytime a variable (that
we call current variable) is assigned a value during the search,
we propagate this decision to the non assigned variables us-
ing our CTCP-GAC algorithm as described above in our gen-
eral procedure. In addition to reducing the size of the search
space, this propagation will also detect later failure earlier.
For instance, if one of the domains of the non assigned vari-
ables becomes empty then we assign another value to the cur-
rent variable or backtrack to the previously assigned variable
if there are no more values to assign to the current one. This
backtrack search method will continue until all the variables
are assigned in which case we obtain a complete assignment
(consistent solution). We then test if the obtained solution is
dominated by any other solution found so far. If it is not the
case, we add it to the current set of Pareto optimal solutions.
The algorithm stops when the search is exhausted (there are
no more Pareto solutions).

4 Experimentation

In order to evaluate the time performance of our solving
method, we conducted several experiments on real data se-
lected from Kjiji.ca®>. These data correspond to cars sale in-
formation. We assume that the goal here it to purchase a vehi-
cle online. 100 products are used for the experiments and for
each product the following attributes are considered: brand,
model, year, engine size, color, milage, price, transmission,
body type and seller name. The constraints and preferences
are represented in our model as shown below.

e Non-conditional constraints (NCC).

— Saleby # capital
— Saleby # roadway



- Kilometers < 150000
— Brand # Kia
- Year > 2002
e Conditional constraints (CC):
(ccl) Saleby = nelson — Bodytype # hatchback
(cc2) Bodytype = hatchback — Saleby # owner
(cc3) (Brand = Honda)or(Bodytype = suv) — Color # red

(ccd) (Kilometer > 13)and(Transmission = manual) —
Brand # Ford

(ced) (Price > 8000) — Kilometers < 120000
o Non-Conditional preferences (NCP) on variables domains:
(ncpl) Year: descending order
(ncp2) Price: ascending order
(ncp3) Kilometers: ascending order
(ncp4) Transmission: auto > manumatic > manual
e Conditional preferences (CP):

(cpl) (Year > 2005)and(Kilometers < 15) —
Brand(Toyota > Pontiac > Nissan > Mazda >
Kia succHyundai: > Honda > Ford > Dogde >
Chrysler = Chevrolet > Buick >~ Benz = BMW »
Audi); otherwise : Brand(Audi >~ BMW > Benz >
Buick > Chevrolet > Chrysler = Dodge > Ford >
Honda > Hyundai > Kia > Mazda > Nissan >
Pontiac > Toyota)

(cp2) (Saleby # owner)or(Transmission = manual) —
Color(yellow > white > silver = red > grey >
green > gold > brown > blue > black);otherwise :
Color(black » blue > brown = gold = green > grey >
red > silver > white > yellow)

(cp3) Brand = Honda —  Bodytye(convertible >
wagon > Ssuv > coupe > sedan > truck >
van succhatchback); otherwise : Bodytye(hatchback >
coupe > sedan > suv > truck > van > wagon >
convertible)

(cp4) Price < 10000 — Saleby(owner > nelson = capital >
roadway); otherwise Saleby(nelson = capital >
owner > roadway)

e Non-conditional relative importance(NCIR):
(ncril) Price > Year
(ncri2) Price > Saleby
(ncri3) Year > Brand
(ncri4) Brand > Bodytype
e Conditional Relative importance(CIR):

(cril) Saleby # owner — Year > Kilometers;otherwise :
Kilometers > Year

(cri2) Transmission = auto — Color >

Bodytype; otherwise : Bodytype > Color

The experiments are conducted on a PC with the following
specifications: Inter(R) Core(TM)i7-4500U CPU @1.8GHz
and 16GB RAM; and running Windows 8 64-bit operating
system. The test platform is MyEclipse 8.5.
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Figure 4: Execution time vs number of products

Figure 4 reports the running time required in seconds to
return the optimal solution when varying the number of prod-
ucts from 20 to 100. For each experiment, 30 run are con-
ducted and the average running time is taken. As we can see
from the figure our proposed method is capable of provide
an answer in less than 2 seconds even when the number of
products is 100.

5 Conclusion and Future Work

Constraints and preferences handling is a complex but
interesting problem that is related to a wide variety of real
world applications. Our proposed CTCP-nets has the ability
to represent and solve these constraint problems under
preferences by returning one or more solutions satisfying all
the constraints and maximizing the preferences. This process
can be done in a very efficient running time, thanks to the
constraint propagation techniques that we propose. The
proposed CTCP-net has been implemented with a generic
design that offers the flexibility for future maintenance and
extensibility. It will be therefore possible in the future to add
other modules dealing with new features and properties such
as the case of cyclic CTCP-nets.

In the near future we intend to consider dynamic CTCP-
nets in the case of constraints and preferences addition and
retraction. Adding constraints and preferences can be rel-
evant when the number of Pareto optimal solutions is very
large. In this particular situation, we need to add more con-
straints or preferences in order to bring this number down to
a manageable size. On the other hand, the retraction of con-
straints can happen when the CTCP-net is inconsistent. In
this case, we need to relax some constraints in order to restore
the consistency of the network. We have previously proposed
incremental constraint propagation techniques for manag-
ing constraints in a dynamic environment [Mouhoub, 2003;
Mouhoub and Sukpan, 2012] and are planning to adapt these
techniques for the dynamic CTCP-net.
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