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Abstract
Reasoning about preference distributions is an im-
portant task in various areas (e.g., recommender
systems, social choice), and is critical for learn-
ing the parameters of the distribution. We consider
the Mallows model with arbitrary pairwise compar-
isons as evidence. Existing inference methods are
able to reason only with evidence that abides to a
restrictive form. We establish the conditional inde-
pendences in the Mallows model, and apply them to
develop a Bayesian network that enables querying
and sampling from the Mallows posterior (the con-
ditional probability space with the evidence incor-
porated). While inference over the Mallows poste-
rior is computationally hard in general, our transla-
tion allows to utilize the wealth of tools for infer-
ence over Bayesian networks. Moreover, we show
how our translation gives rise to new results on sig-
nificant cases with a polynomial-time inference.

1 Introduction
Preferences drive our choices, making them prevalent in ap-
plications and systems that support user decisions and act
on their behalf. Preferences reflect the relative quality or
desirability of the outcomes over some domain of possible
choices, and can arise in a variety of forms, including total
orders or rankings, top-k lists, and partial orders. The pro-
liferation and volume of preference data gives rise to special
analytical tasks over them. Examples include rank aggrega-
tion in genomic data [Boulesteix and Slawski, 2009; Kolde
et al., 2012], management and analysis of elections [Gormley
and Murphy, 2008; McElroy and Marsh, 2009], and recom-
mendation systems in electronic commerce [Das Sarma et al.,
2010]. Incorporating sophisticated analytics into applications
that operate over modern volumes of preference data poses
a new challenge to knowledge representation and inference
formalisms required to model and query such data.

Statistical models over ranking data, developed in the
statistics and psychometrics literature [Marden, 1995], are
used in order to form recommendations, make predictions,
and uncover trends. Current approaches to querying pref-
erence distributions accommodate only very restricted forms
of evidence about individual user preferences, like complete

rankings, top-k/bottom-k alternatives, and partitioned prefer-
ences [Lebanon and Mao, 2008]. However, preference data
will often take the form of arbitrary pairwise comparisons
(or partial orders), as expected in scenarios of search, prod-
uct comparison, and online advertising [Huang et al., 2012;
Lu and Boutilier, 2014].

Statistical models for generating ranking data assume a
group of users with a reference ranking (often called modal).
The ranking corresponding to each user is a noisy version
of the reference ranking that is generated independently for
each user. The Mallows model [Mallows, 1957] has received
much attention from the statistics and machine learning com-
munities [Lu and Boutilier, 2014; Awasthi et al., 2014;
Lebanon and Mao, 2008]. This model is parametrized by (a)
a reference ranking σ = σ1, . . . , σm over a set A of m alter-
natives, and (b) a dispersion parameter φ ∈ (0, 1]. The prob-
ability of a ranking r in this model is proportional to φd(σ,r),
where d(σ, r) denotes the Kendall’s tau distance between per-
mutations (see Section 2 for a formal definition).

The conditional (posterior) distribution implied by incor-
porating evidence into a Mallows model is termed the Mal-
lows posterior (see Equation (5)). In this paper we make no
assumptions regarding the evidence, which can take the form
of any partial order. Computing the probability of evidence,
and sampling from the Mallows posterior, are intractable
under standard complexity assumptions [Lu and Boutilier,
2014]. The artificial intelligence community is no stranger to
such computational challenges, and has developed tools for
representing distributions over a combinatorially large space,
along with a suite of algorithms to efficiently perform proba-
bilistic inference over these distributions.

The Repeated Insertion Model (RIM) [Doignon et al.,
2004], is a generative process that gives rise to a fam-
ily of distributions over rankings and offers a construc-
tive, simple, and useful way to sample complete rankings
from the Mallows distribution. Probabilistic graphical mod-
els have been successfully applied to the task of modeling
and reasoning about generative processes, including speech
recognition [Zweig and Russell, 1998], document classifica-
tion [Hofmann, 2001], medical diagnosis [Heckerman, 1989],
social network analysis [Farasat et al., 2015] and object track-
ing [Pavlović et al., 1999]. Using probabilistic graphical
models to represent the RIM process facilitates the applica-
tion of state-of-the-art algorithms for the task of reasoning



about partial orders in the Mallows distribution.
The task we address in this paper is that of computing

the probability that a ranking abides to a given partial order.
This is essentially the partition function (i.e., the normaliza-
tion factor) associated with the Mallows posterior. Further-
more, a Bayesian network representation of the Mallows pos-
terior enables applying known and well tested sampling tech-
niques, which are critical for learning the Mallows model pa-
rameters [Lu and Boutilier, 2014; Stoyanovich et al., 2016;
Awasthi et al., 2014; Huang et al., 2012].

Contributions. Our contributions are as follows.
1. We introduce a probabilistic model for RIM and use it to

characterize the conditional independence relationships
inherent in the RIM process.

2. We use these conditional independence relationships in
order to construct a Bayesian network that enables infer-
ring the probability of evidence in an arbitrary form.

3. We establish new fragments of partial orders that do not
fall into any of the known tractable cases, but that allow
for efficient inference using our proposed approach

Roadmap. In Section 2 we introduce required notation,
and provide an overview of the Mallows model and Bayesian
networks. We introduce the probabilistic model for RIM in
Section 3. In Section 4 we show how the Mallows poste-
rior distribution is represented using Bayesian networks, and
introduce a new fragment of partial orders whose Bayesian
network representation enables performing inference in poly-
nomial time. We conclude in Section 5.

2 Preliminaries
2.1 Mallows and the Repeated Insertion Model
Basic notation. We follow the notation of Lu and
Boutilier [2014]. We assume an agent has a total order (or
ranking), �, over a set A = {a1, a2, . . . , am} of m alterna-
tives. The relationship x � y means that the agent prefers
alternative x to y. The ranking is represented as a bijection
σ : A → [m], where σ(a) is the position of item a in the
ranking. We denote by σ = σ1, . . . , σm a ranking with the
i-th ranked alternative σi ∈ A, and the induced preference
relation as �σ .

In many cases the agent’s complete ranking is unknown,
and we have only partial information about it in the form of
a set of pairwise preferences: ν = {x1 � y1, . . . , xk � yk}.
The semantics of ν is that of its transitive closure, denoted
ν∗. If ν∗ is a total order on A, then we say that the set ν is
complete. Given a ranking σ = σ1, . . . , σm and preferences
ν, we define the distance between the two to be the number
of pairs in ν that are misordered relative to σ:

d(ν, σ) =
∑

1≤i<j≤m

1[σj � σi ∈ ν∗] (1)

where 1 is the indicator function that returns 1 for all pairs in
ν∗ (the transitive closure of ν) and 0 on all other pairs. When
ν is a complete ranking, d(ν, σ) is the classic Kendall’s tau
metric on rankings [Kendall, 1938].

The Mallows model is parameterized by a ranking σ
called a reference ranking, and a number φ ∈ (0, 1] called

Algorithm RIM(σ,φ)

1: Let r be an empty ranking
2: for all i ∈ 1 . . .m do
3: Insert σi into r at position j ≤ i with probability

φi−j

(1+φ+φ2+···+φi−1)

Figure 1: RIM Sampling of Mallows

a dispersion parameter. The probability of observing a rank-
ing r is given by

P (r) = P (r|σ, φ) =
1

Z
φd(r,σ) (2)

where d(r, σ) is the distance between r and σ as defined
in (1), and Z, the normalization constant, is given by

Z = (1 + φ)(1 + φ+ φ2) . . . (1 + · · ·+ φm−1) . (3)

The Mallows model has been phrased via a rejection sam-
pling procedure, which results in the probability distribution
of Equation (2) [Mallows, 1957]. This procedure, however,
is highly inefficient due to the high rejection rate of intran-
sitive rankings. An efficient sampling procedure is the RIM
process [Doignon et al., 2004] that we describe next.

The Repeated Insertion Model (RIM) is a generative
process that gives rise to the distribution of Equation (2) and
provides a practical way to sample rankings from a Mallows
model [Doignon et al., 2004]. The RIM procedure, presented
in Figure 1, assumes a reference ranking σ = σ1, . . . , σm,
and dispersion parameter φ.

RIM generates a new output ranking, r, by inserting items
σ1, . . . , σm into r, according to their order in σ (the reference
ranking). After i− 1 rounds, the ranking r will contain items
σ1, . . . , σi−1. Then, in round i, the probability of inserting σi
into position j ∈ [1, i] in r is:

pij =
φi−j

1 + φ+ φ2 + · · ·+ φi−1
(4)

Critically, the insertion probabilities are independent of the
ordering of the previously inserted alternatives.

The Mallows posterior is the conditional distribution that
results from incorporating evidence, ν, in the form of a par-
tial order, into the Mallows distribution. Formally, for the
Mallows distribution given by σ and φ, the Mallows posterior
under the evidence ν is given by

Pν(r) =
φd(r,σ)∑

r′∈Ω(ν) φ
d(r′,σ)

· 1[r ∈ Ω(ν)] (5)

where Ω(ν) is the set of complete rankings over A that are
consistent with ν. The probability of the partial order ν is the
denominator of Equation (5) divided by Z, the normalization
constant (Equation (3)); formally, it is given by

P (ν) =
1

Z

∑
r′∈Ω(ν)

φd(r′,σ) .
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RIM is an efficient sampler, but it does not provide an ef-
ficient way to sample from the Mallows posterior, which is
important when the goal is to reason about the probability of
partial orders.

2.2 Bayesian Networks
We denote Random Variables (RVs) by capital letters (e.g.,
X,Y, Z), and their values by lowercase letters (e.g., x, y, z).
Sets of RVs are denoted by bold capital letters (e.g., X,Y)
and their values by bold lowercase letters (e.g., x, y).

Two RVs X and Y are independent, denoted X ⊥ Y , if

P (X,Y ) = P (X)P (Y )

Two RVs X and Y are conditionally independent given a
set Z of RVs, denoted X ⊥ Y | Z, if

P (X,Y | Z) = P (X | Z)P (Y | Z)

A Probabilistic Graphical Model (PGM) is a compact rep-
resentation of a probability distribution that is too large to
be handled using traditional specifications such as tables and
equations. Probabilistic graphical models exploit the struc-
ture induced by the probabilistic independence properties that
exist in many distributions modeling real-world phenomena.
This structure, captured graphically, enables factoring the
representation of the distribution into modular components
that lead to a compact representation of high-dimensional dis-
tributions. Graphical models are equipped with a suite of in-
ference algorithms that enable to automatically infer implica-
tions of the represented information.

A special case of a PGM is a Bayesian Network (BN)
that represents a joint probability distribution over a set X =
{X1, X2, . . . , Xn} of RVs. The variables are represented as
nodes in a directed acyclic graph, and an edge between two
nodes represents a direct probabilistic dependency between
them, such that the joint distribution is given by the chain
rule

P (x1, . . . , xn) =
∏
i

P (xi|parents(Xi))

where parents(Xi) are the nodes with outgoing edges to Xi.
Each node has a Conditional Probability Table (CPT) that
enumerates P (Xi|parents(Xi)) for all possible values of Xi

and parents(Xi).
Although probabilistic inference is generally a #P-

complete problem, existing algorithms are able to take advan-
tage of the conditional independences encoded in the graph-
ical structure. Specifically, the complexity of exact infer-
ence algorithms is exponential in the BN’s treewidth, a graph-
theoretic parameter that measures the resemblance of a graph
to a tree [Darwiche, 2010]. As the network becomes denser,
its treewidth increases, as does the complexity of inference.
This lead to the development of approximation algorithms for
performing inference [Darwiche, 2010]. Casting the Mallows
posterior as a BN enables to capitalize on the vast progress
made in the field of PGMs over the last few decades.

3 A representation for RIM
In what follows we consider the ranking, generated by RIM,
at each time t ∈ {1, 2, . . . ,m}.

Definition 1 (Position RV). We denote by Xt
i the position of

item σi ∈ A at time t, right after the insertion of item σt
into the ranking. We denote by Xt = {Xt

1, X
t
2, . . . , X

t
t} the

positions of items σ1, . . . , σt in the ranking at time t. The
time span of Xt

i is the interval [i, t].

A position RV (Definition 1) whose subscript and super-
script are identical (i.e., Xi

i ) is simply the insertion position
of σi, and is thus termed insertion RV.

Definition 2 (Ranking at time t). We denote by rt the ranking
over the items σ1, . . . , σt, as generated by the RIM process,
at time t.

We note that for any reference ranking σ there is a bijection
between rt and Xt.

Definition 3 (Insertion Probabilities [Doignon et al., 2004]).
We denote by wki the probability that item σi ∈ A is inserted
into position k ≤ i at time i. Therefore:

wki = P (Xi
i = k) = φi−k

(
1− φ
1− φi

)

We use the following property of the RIM process. The
insertion of the ith alternative, σi, at some position in the
ranking r is independent of the positioning of all previously
inserted alternatives σ1, . . . , σi−1 [Doignon et al., 2004]. The
independence always holds for RIM. When considering the
posterior distribution this is no longer the case because the
position of σi may depend on the positions of items {σj ∈
A : j < i}, previously placed in the ranking.

3.1 Position Probabilities

One of the building blocks we will need for generating a BN
for partial orders over Mallows involves calculating the prob-
ability that item σi at time j > i is at position l (i.e., Xj

i = l).
The steps outlined in Equation (6) define a dynamic program-
ming algorithm that calculates the probability that Xj

i = l.
The eventXj

i = l can take place in one of two ways. First, σi
was at position l − 1 at the previous time (j − 1) and σj was
inserted somewhere before it (i.e.,Xj−1

i = l−1 andXj
j ≤ l).

Second, it must have already been in position l at time j − 1,
and σj was inserted after it (i.e., Xj−1

i = l and Xj
j > l).

The rest of the transitions in Equation (6) are due to the RIM
independence property that states that the insertion probabili-
ties do not depend on the placement of the previous members.
The base case is when j = i and then P (Xi

i = l) = wli.
The complexity of the dynamic programming algorithm

defined by Equation (6) is determined by the number of dis-
tinct states that require computation. Each state is defined by
a time slice t ∈ [i, j], and a possible position of item σi in the
range [1, l], at time t. Overall, this leads to a complexity of
O((j − i) · l).
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P (Xj
i = l) =

P (Xj−1
i = l − 1, Xj

j ≤ l − 1) + P (Xj−1
i = l,Xj

j > l) =

P (Xj
j ≤ l − 1)P (Xj−1

i = l − 1) + P (Xj
j > l)P (Xj−1

i = l) =

P (Xj−1
i = l − 1)

l−1∑
q=1

P (Xj
j = q)+

P (Xj−1
i = l)

j∑
s=l+1

P (Xj
j = s) =

P (Xj−1
i = l − 1)

l−1∑
q=1

wq
j + P (Xj−1

i = l)

j∑
s=l+1

ws
j

(6)

The dynamic programming algorithm of Equation (6) can
easily be extended to compute the conditional probability
P (Xj

i = l | Xk
i = l′), where i ≤ k < j and l′ ≤ l. The

only difference is that the base case is different and occurs
when j = k (instead of j = i). The complexity of com-
puting the conditional probability P (Xj

i = l | Xk
i = l′) is

O((j − k)(l − l′)).
Proposition 1 states that our model enables computing the

probability of a single preference efficiently.
Proposition 1 (Single Ordered Pair). Let σ = σ1, . . . , σm de-
note the reference ranking of a Mallows distribution over a
set A of m items. Let σi, σj ∈ A such that w.l.o.g i < j.
The probability of the partial order ν = {σj � σi} can be
computed in time O(m3).

Proof. We show how to apply the dynamic programming al-
gorithm from Equation (6) in order to compute the desired
probability. The key observation is that for any pair of items
σi, σj ∈ A such that (w.l.o.g) i < j, the relative ordering
between σi and σj is determined when σj is inserted into
the ranking, and this relative ordering remains unchanged
through out the RIM process. Therefore:

P (Xm
i > Xm

j ) = P (Xj−1
i ≥ Xj

j )

=

j−1∑
l=1

P (Xj−1
i = l,Xj

j ≤ l)

=

j−1∑
l=1

P (Xj
j ≤ l | X

j−1
i = l) · P (Xj−1

i = l)

=

j−1∑
l=1

P (Xj−1
i = l) ·

l∑
q=1

P (Xj
j = q | Xj−1

i = l)

=

j−1∑
l=1

P (Xj−1
i = l) ·

l∑
q=1

P (Xj
j = q)

=

j−1∑
l=1

P (Xj−1
i = l) · (w1

j + · · ·+ wl
j)

(7)

The probability P (Xj−1
i = l) can be computed using Equa-

tion (6) in timeO((j− i) · l), leading to an overall complexity
of
∑j−1
l=1 O((j − i) · l) = O(j3).

We note that the partial order of Proposition 1, despite be-
ing modest in size, does not fall into any of the known re-
strictive forms of evidence for which the probability can be
computed efficiently.

3.2 Temporal Independence in RIM
The Bayesian network we will develop for inferring the Mal-
lows posterior exploits the inherent temporal independences
in the RIM process. Let σi ∈ σ, and let t > i be some time.
Intuitively, we see that the position of σi at some time t′ > t,
will not depend on any event that occurred before time t given
that we know the value ofXt

i , (i.e., σi’s position at this time).
We formalize this intuition in the following Lemma (proofs
are deferred to the full version of this paper).
Lemma 1. Let σi, σj ∈ σ and let t be a time such that t >
max(i, j). Then:

Xt+k
i ⊥ Xt−l

j | Xt
i

where k, l are integers such that k ≥ 0 and 1 ≤ l ≤ t − j.
This proposition also holds for i = j.

Lemma 1 is used to prove the following lemma.
Lemma 2. Let σi, σj ∈ σ such that i < j. Then:

Xj−l
i ⊥ Xj+k

j

where k, l are integers such that k ≥ 0 and 1 ≤ l ≤ j − i.
The following theorem is applied in the algorithm for gen-

erating the Bayesian network.
Theorem 1. LetXs

i , X
t
j , i 6= j, denote two position RVs with

disjoint time spans, (i.e., [i, s] ∩ [j, t] = ∅). Then Xs
i ⊥ Xt

j .

Proof. Assume w.l.o.g that i < j. Since [i, s] ∩ [j, t] = ∅
then s < j, that is, s = j − l for some l ≥ 1. Also, t ≥ j
and therefore t = j + k for some k ≥ 0. The result follows
immediately from Lemma 2.

4 A Bayesian Network for RIM
In this section we show how the method of computing an
item’s position (Section 3.1) and the temporal independences
in RIM are applied to the generation of a BN for RIM. In what
follows, the reference ranking is denoted by σ and the partial
order by ν.

The BN generation procedure can be viewed as tracking
the RIM process (Figure 1), while enforcing the constraints
dictated by ν. Specifically, at each step i ∈ [1,m], the BN
is augmented with the constraints that relate the position of
item σi with the positions of σ1, . . . , σi−1, which are already
part of the ranking.

In the complete version of this paper we shall provide a de-
tailed algorithm for constructing the BN from a given partial
order and prove all of the conditional independences captured
in the network. We will also show that the size of the BN is
polynomial in m, the size of the reference ranking. Specifi-
cally, we prove that the BN has a polynomial number of vari-
ables and that each CPT contains a polynomial number of
entries. This does not mean that we can perform inference in
polynomial time because the complexity of inference depends
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Figure 2: (a) The partial order ν = {σ1 � σ4, σ3 � σ2} (b) BN for ν, the partial order in Figure 2a (c) CPT for the family
{X2

1 , X
3
3 , X

3
1} in the BN of Figure 2b, representing the affect of X2

1 and X3
3 on the position of σ1 at time 3 (i.e., X3

1 ) (d) CPT
for the family {X3

1 , X
4
4} in the BN of Figure 2b, that represents the constraintX4

4 > X3
1 . (e) Graphical representation of partial

order ξ = {σik � σik−1
� σik−2

� · · · � σi1} (f) BN for ξ, the partial order in Figure 2e

exponentially on the width of the BN, which is not necessarily
fixed [Darwiche, 2010]. There are partial orders that, under
our model, induce BNs that admit polynomial time inference
algorithms. Theorem 2 provides a characterization of such a
class of partial orders.

In this section, we focus on how the ordering constraints
are included in the CPTs of the BN. We begin with an ex-
ample of a BN that represents two pairwise preferences. A
single pairwise preference was considered in Theorem 1.

Example 1. We consider a Mallows model over five items,
with σ = σ1σ2σ3σ4σ5 and dispersion parameter φ. The par-
tial order, ν = {σ1 � σ4, σ3 � σ2}, is presented in Fig-
ure 2a. A RIM-generated ranking, r, can abide to this con-
straint only if at time t = 4, σ4 is inserted into a position
that is larger than the position of σ1, and, at time t = 3, σ3

is inserted into a position that is not larger than the position
of σ2, or formally, only if X4

4 > X3
1 , and X3

3 ≤ X2
2 . These

constraints are captured in the BN of Figure 2b.
The CPT in Figure 2d contains only entries that abide to

the pairwise constraint σ1 � σ4, or equivalently, X4
4 > X3

1 .
The probability column of these entries incorporates the in-
sertion probability of σ4 into the ranking r.

At a first glance, it would seem that we could have con-
structed our BN without the random variables X1

1 and X2
1 ,

since these do not directly take part in any of the constraints
(see Figure 2a). However, the value of X3

1 , which is required
for modeling the ordering constraints, is affected by the in-
sertion positions of both σ2 and σ3 (i.e., X2

2 and X3
3 ). This

affect is captured using Equation (8) and presented in tabular
form in Figure 2c.

Equation (8), and its corresponding CPT (Figure 2c), es-
sentially encode the functional dependency of σi’s position at
time k (i.e.,Xk

i ) on its position in the previous time slice (i.e.,
Xk−1
i ), and the insertion position of item σk (i.e., Xk

k ).

P (Xk
i |Xk−1

i , Xk
k ) =


1 if Xk

k ≤ Xk−1
i and Xk

i = Xk−1
i + 1

1 if Xk
k > Xk−1

i and Xk
i = Xk−1

i

0 otherwise
(8)

The BN generation procedure is outlined as follows.
Compute the set of position and insertion RVs (Defini-

tion 1) that are required to represent the constraints imposed
by the partial order. This step is carried out by examining
the constraints that are relevant at each time i ∈ [1,m], and
generating the associated RVs. In Example 1, ν2, the partial
order relevant to time i = 2, is empty. On the other hand, the
partial order ν3 = {σ3 � σ2}, induces the creation of RVs
X2

2 andX3
3 (see Figure 2b), which are required to enforce the

constraint that X3
3 ≤ X2

2 .
Apply the conditional independence propositions from

Section 3.2 in order to generate the Directed Acyclic Graph
(DAG) of the BN. Theorem 1 provides a characterization of
when two position RVs Xs

i and Xt
j , are independent. In the

full version of this paper we will describe how to relate be-
tween these position RVs when the condition of the theorem
is not met (that is, [i, s] ∩ [j, t] 6= ∅).

Compute the CPTs for each family, {Xi ∪parents(Xi)},
in the DAG generated in the previous step. We partition the
CPTs of the BN into two types.

The first type of CPT specifies the possible values of an
insertion RV, Xi

i , based on the assignment to parents(Xi
i ),

the nodes with outgoing edges to Xi
i . (We remind the reader

that an insertion RV, Xi
i , represents the insertion position of

item σi into the ranking.)
In CPTs of this type, the parents represent certain posi-

tions in the ranking at time i − 1, right before the insertion
of σi into the ranking takes place. The parent RVs determine
the possible range of values that the insertion RV can be as-
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signed. Specifically, Xi
i , the insertion RV, contains at most

two parents, which represent the lower and upper bounds on
the positions that Xi

i can be assigned. For example, assume
that ν, the partial order, contains the following constraint
σj � σi � σk, where j < i and k < i. In order to generate
a ranking that complies to this constraint, item σi needs to
be inserted before σk and after σj . Translating this constraint
into our model we arrive at Xi−1

j < Xi
i ≤ Xi−1

k . Therefore,
in the BN, we will have that parents(Xi

i ) = {Xi−1
j , Xi−1

k }.
An example of such a CPT, in tabular form, is presented in
Figure 2d.

In many cases, the boundaries of the insertion RV are a
function of other positions. For example, assume the fol-
lowing set of pairwise constraints, ν = {σi � σk, σi �
σj , σi � σl}. Applying our model, this constraint is trans-
lated toXi

i ≤ min(Xi−1
j , Xi−1

k , Xi−1
l ). In the complete ver-

sion of this paper we will describe how to generate CPTs that
represent more complex constraints on the insertion RV.

The second type of CPT enables tracking the position of
an item throughout the RIM process. These CPTs represent
the relationship between two position RVs, Xs

i and Xt
i , as-

sociated with the same item, σi. The entries in these CPTs
are computed using the dynamic programming algorithm of
Equation (6).

The fact that the CPTs of the resulting BN are polyno-
mial in size has important implications regarding the study of
fragments of partial orders that allow for efficient reasoning.
For example, partial orders that induce polytrees (a directed
acyclic graph in which the subgraph reachable from any node
forms a tree1), can be reasoned with efficiently by applying
one of the well known inference algorithms, Belief Propaga-
tion [Pearl, 1989] or Bucket Elimination [Dechter, 1999]. In
the full version of this paper we will prove Theorem 2 that
considers linear partial orders.
Theorem 2. Consider a Mallows model over a set A of m
elements, with a reference ranking σ = σ1, . . . , σm, and
dispersion parameter φ. Let ξ = {σi1 � σi2 , σi3 �
σi4 , . . . , σin−1

� σin}. The probability of ξ can be com-
puted in polynomial time if the item indexes can be arranged
in either:

1. Ascending order:

i1 < i2 ≤ i3 < i4· · · in−3 < in−2 ≤ in−1 < in

2. or, descending order:

i1 > i2 ≥ i3 > i4· · · in−3 > in−2 ≥ in−1 > in

The example that follows shows how to represent and rea-
son about evidence in the form of a linear series.
Example 2. We consider a Mallows model overm items, σ =
σ1, . . . , σm and dispersion parameter φ. Let ξ = {σik �
σik−1

� σik−2
� · · · � σi1} where ik > ik−1 > · · · > i1. A

RIM-generated ranking, r, can abide to this constraint only
if for every consecutive pair of indexes {ij−1, ij} where j ∈
[2, k], we have thatXij

ij
≤ Xij−1

ij−1
. For example, if ξ = {σ8 �

σ4 � σ1} then we have that X4
4 ≤ X3

1 and X8
8 ≤ X7

4 .

1https://en.wikipedia.org/wiki/Polytree

The partial order and corresponding BN are presented in
Figures 2e and 2f, respectively. The BN in Figure 2f contains
two types of CPTs. The first relates between RVs that repre-
sent the item’s position at different times, (i.e., Xt

i and Xt′

i ).
The size of these factors is limited to O(m2), and each en-
try can be computed in polynomial time using the dynamic
programming algorithm of Equation (6). The second type of
CPT enforces the constraint that item σij will be inserted into
a position that is not larger than the position of σij−1 (i.e.,
X
ij
ij
≤ Xij−1

ij−1
). The size of this factor is also in O(m2).

It is easily seen that the BN of Figure 2f has 2k factors,
each of polynomial size. This, combined with the fact that
this BN is a linear path, enables performing inference in poly-
nomial time.

To the best of our knowledge, ours is the first approach
which enables computing the probability of linear partial or-
ders exactly and efficiently. For example, the approximation
algorithm AMP [Lu and Boutilier, 2014] was shown to pre-
form arbitrarily bad on such partial orders, with an approxi-
mation error of O(m), where m is the cardinality of σ, the
reference ranking.

Theorem 2 illustrates the potential of the proposed ap-
proach in representing and reasoning about the Mallows pos-
terior distribution efficiently. An accurate representation of
the posterior enables answering queries over this distribution,
and sampling from it. In cases where the partial order in-
duces a Bayesian network with a width too large to be han-
dled exactly, we can resort to approximate reasoning tech-
niques [Mateescu et al., 2010; Gogate and Dechter, 2011] to
obtain an approximate representation of the posterior.

5 Conclusions
In this paper we analyzed the RIM process that provides an
effective sampling procedure over Mallows distributions. We
identified the conditional independences in the RIM process,
and applied them to the generation of a Bayesian network that
represents RIM with partial order constraints. We presented
a dynamic programming algorithm that enables calculating
the position of an item at a certain time, and applied the al-
gorithm to the construction the network’s CPTs. Finally, we
presented a new fragment of partial orders that admits effi-
cient inference.

In an ongoing research we pursue the utilization of our
modeling by deploying the wealth of research, algorithms and
software for inference over Bayesian networks. With that, our
hope is to substantially advance the state of the art on infer-
ence over Mallows distributions.
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