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Abstract
Jury trial is, perhaps, the most prominent example
of seeking a consensus. The process is particularly
difficult if the judge places a deadline by which the
jury must reach a unanimous decision, otherwise
declaring a mistrial. A mistrial is commonly per-
ceived to be worse than any decision the jury might
render. As a result, while each juror has her own
idea about the fairness of each possible trial out-
come, she may eventually choose to vote for a less
fair outcome, rather than cause a mistrial by break-
ing unanimity.
In this paper we propose a model for the above sce-
nario — Consensus Under a Deadline (CUD) —
based on a time-bounded iterative voting process.
We provide some theoretical features of CUDs, par-
ticularly focusing on convergence guarantees and
the quality of the final decision. An extensive ex-
perimental study demonstrates the more subtle fea-
tures of CUDs, e.g., the difference between two
simple types of juror behaviour, lazy vs. proactive
voters.

1 Introduction
Consider a group of individuals that need to agree on one
alternative out of several options. Add a deadline, so that
the decision must be reached before a certain time limit, oth-
erwise some default alternative, least preferred by everyone,
is chosen. Require unanimity, so that the chosen alternative
should be supported by every individual. Under this model,
some questions come to mind. How often will the group reach
a consensus? What effort will be required from the voters?
What attributes will the decision have?

Consider, for instance, a jury trial. There are a few alterna-
tives (e.g.,“guilty”, “not guilty”, “not proven”). A civil trial
jury is asked to reach a decision by majority agreement, while
a criminal case decision requires unanimity, i.e. all the jurors
must agree on the verdict. If no decision is reached until a
certain deadline, a mistrial is declared. A mistrial is possibly
the worst alternative for every juror, since it means that the
case is not decided. During the actual trial the jurors do not
communicate with one another, and during deliberations they

discuss the case only inside the jury room. The intent may be
that (at first) they should independently decide which verdict
they consider to be most fair, and potentially have an order of
preferences over possible verdicts. Jury deliberation consists
of a discussion about the trial case, and searching for agree-
ment about a verdict. In the discussion, jurors reveal some
information about which verdict they consider to be fair. Us-
ing a simple voting process (“raise your hands”), jurors vote
to find the most preferred outcome. The process is iterative,
where at every stage some discussion is held, followed by an-
other voting process. It ends either when the jury reaches a
consensus, or when the deadline is reached, the sooner of the
two.

A jury trial is not the only scenario where consensus under
a deadline may be required. Other examples include a group
of friends discussing their next vacation destination; members
of a university department choosing a day for a weekly semi-
nar; a scientific committee deciding where to hold next year’s
conference; even a casual problem such as a family dinner
can cause some discussions.

All situations above have several common features. First,
there is a strict deadline for reaching an agreement: a judge’s
requirement, national holidays, the start of an academic year,
the budget approval deadline, or dinnertime. Second, assum-
ing that individuals at least somewhat differ in their pref-
erences, it is unlikely that a unanimous consensus will be
reached immediately by a simultaneous vote. A consensus
is usually reached, if at all, only after several rounds of a se-
quential voting process. Commonly used methods include
emails, calls, messages, or on-line platforms such as Doodle.

Inspired by these scenarios, we define a strict, formal, time-
bounded iterative voting process. The process begins when
each voter reveals her most preferred alternative. The prefer-
ences are aggregated using majority voting with a threshold
(unanimity being the most extreme threshold). If a consen-
sus is not instantly reached, a voting process begins. Voters
may chose to change their vote. For instance, a voter that
realises that her most preferred alternative has no chance of
being elected, might decide to change her mind and vote for
another alternative. At each stage, all voters that wish to vote
apply for a voting slot. One voter is chosen randomly; the
chosen voter states her currently most-preferred alternative.
Each stage is defined as one clock tick. The process ends
when a consensus is reached, or when the deadline is reached,



the sooner of the two. The voters’ ultimate goal is to reach a
consensual decision, and do so before the deadline.

Assuming rational voter behaviour, we define two types of
voters: a proactive voter, who likes to participate actively in
the procedure and will not miss any chance to state her prefer-
ences, and a lazy voter, who prefers not to act until it is really
necessary. We assume a sequential, iterative voting process,
and that each voter has a strict order of preferences over the
alternatives that she keeps strictly to herself. Bargaining is
not permitted. The voter is allowed to apply for a “voting
slot”, i.e., an opportunity to vote. When the voter is given
permission to vote, she reveals the alternative for which she
wants to vote. The voter is allowed to strategically change her
vote as often as she likes.

Contributions: We provide what is, to the best of our
knowledge, the first model for iterative voting processes with
a deadline (Section 3). The model can easily be generalised
to other voting rules, but for the ease of exposition, we initiate
this line of research with a specific model, namely, Consen-
sus Under a Deadline, based on Plurality with a threshold
(also known as Majority). Then, in Section 3.1, we prove
the theoretical properties of CUDs, such as stopping, guaran-
tees of no-mistrial runs, and the (additive) Price of Anarchy
bounds. Since the progress of CUDs has a rigorous algo-
rithmic description, it is possible to effectively simulate such
games. We resort to such a simulation to investigate statistical
properties and tradeoffs of CUDs. In more detail, Section 4
concentrates on Unanimous CUDs, and provides an encom-
passing experimental analysis of CUD trade-offs. In partic-
ular, we measure the effects of voter behavioural types (lazy
vs. proactive) on the number of voting steps and the Price of
Anarchy. We find an indication of a trade-off between the
fairness of the voting outcome and the effort required from
the voters during the process.

2 Related Work
Deadline scenarios are abundant in models of bargaining;
“[f]inal deadlines are fixed time limits that end a negotiation”
[Ma and Manove, 1993; Moore, 2004]. One of the first ex-
perimental studies on deadlines in bargaining demonstrated
the deadline effect: a majority of agreements are obtained
in the final seconds before the deadline; even complete in-
formation does not speed agreement much, contrary to what
might be expected [Roth et al., 1988]. The concession rate in-
creases as the deadline approaches [Cramton and Tracy, 1992;
Lim and Murnighan, 1994]. However, there is a probabil-
ity that no agreement will be reached before the deadline
[Ma and Manove, 1993]; more than half of negotiations may
end without agreement [Cramton and Tracy, 1992]. Perhaps
surprisingly, moderate deadlines were found to have a posi-
tive effect on the outcome of negotiation, though the partici-
pants expected that the deadline would hurt their negotiation
[Moore, 2004].

Deadlines in sequential voting can be represented as a mo-
ment in time when the voters become indifferent between al-
ternatives and are willing to finish the process with any al-
ternative winning. “Indifferent time” is the moment in time
when the utility of the least-preferred alternative becomes

equal to the utility of the most-preferred alternative a moment
later. The agreement is reached immediately at the first round
of voting, and it favours the pivotal voter with higher indiffer-
ence time [Kwiek, 2014].

While in a bargaining procedure the outcome may be a
compromise among the most preferred outcomes by the ri-
vals, in CUDs a strict alternative must be chosen. For exam-
ple, in a jury trial there is no compromise between “guilty”
– “not-guilty”. We focus on iterative voting processes under
a deadline and do not allow negotiation or bargaining. In-
formally, a deadline is a fixed time limit that ends the voting
process.

In general, CUDs closely follow the way other iterative
voting games progress, e.g., [Meir et al., 2010; Reijngoud
and Endriss, 2012; Naamani-Dery et al., 2015; Obraztsova
et al., 2015]. However, CUDs have several unique fea-
tures. First, although CUDs do build up from a known vot-
ing rule, they work directly with the set of possible win-
ners (i.e., alternatives that might be chosen by the majority),
and behave much like non-myopic games based on local-
dominance (see, e.g., [Meir et al., 2014; Lev et al., 2015;
Meir, 2015]). On the other hand, the distinction between lazy
and proactive voter behaviour links CUDs with biased vot-
ing (see, e.g., [Elkind et al., 2015]). The concept of a de-
fault alternative (e.g., a mistrial) is also similar to the way
lazy-biased voters act: an alternative outside the candidate
set is introduced, namely an abstention. However, unlike the
abstention of lazy-biased voters, a default alternative is en-
forced on all voters in circumstances that encompass the en-
tire voter set. Another feature that distinguishes CUDs from
other iterative voting processes is a deadline timeout. The
standard assumption in the iterative voting literature is that
voting processes do not stop, unless no voter has a way to
further manipulate the outcome. Convergence is the subject
of an extensive research effort, both to determine when these
processes stop and with what ballot profile [Meir et al., 2010;
Reijngoud and Endriss, 2012; Reyhani and Wilson, 2012;
Obraztsova et al., 2015]. CUDs, on the other hand, always
stop, as we will show in Theorem 1.

To the best of our knowledge, an iterative voting procedure,
where voters must vote for certain well-defined alternatives,
and where a deadline exists as a restriction of the number of
voting stages, has not been examined. This paper is a first
attempt at analysing theoretical features of CUDs in iterative
voting and to demonstrate them experimentally, with a focus
on the convergence rate and the quality of the final decision.

3 Model
In this section we formally model an attempt to reach a de-
cision under a deadline based on a bounded iterative voting
process. If the iterative process converges to an alternative,
that alternative is called the winner. We concentrate on an ex-
tension of the Majority rule, i.e., on the plurality voting rule
with a threshold. However, the model can be further extended
to more general voting rules. The threshold can be tight, re-
quiring the decision to be unanimous, or relaxed, requiring a
certain threshold of the voters to agree on the decision. The
formal details of our model are as follows.



Let V be a set of n voters, C a set of m alternatives, and
τ the number of discrete time slices before deadline. We as-
sume that the process starts at time t = τ and finishes at dead-
line t = 0, that is, time is decreasing and the sequence of the
stages is (τ, τ − 1, . . . , t + 1, t, t − 1, . . . , 1, 0). Each voter
is characterised by a truthful preference ai ∈ L(C), where
L(C) is the space of complete and non-reflexive orderings
over the set of alternatives C. We write ai(c, c′) if voter i
prefers c to c′. At the beginning of the process, every voter
i ∈ V casts a ballot bti ∈ C that reveals her most preferred
candidate at time t = τ . The ballots of all voters are collected,
forming a ballot profile, bt = (bt1, . . . , b

t
n). The score of each

candidate within a given ballot profile is the number of the
voters that voted for this candidate: scc(bt) = |{i|bti = c}|.
A score vector is a collection of scores of all candidates
sc(bt) = (sc1(bt), . . . , scm(bt)). For convenience, a short-
hand st = (st1, . . . , s

t
m) = sc(bt) is used, and we omit the

time superscript to denote an arbitrary score vector. The col-
lection of score vectors is public information, and is visible
to all the voters. Using the score vector, the possible winners
at time t can be computed using a Possible Winner Function
(PWF). Our nottion of PWF extends the classical concept of
possible winners (that refers to expansions of partial prefer-
ence ballots, see, e.g.,[Xia and Conitzer, 2011]) to iterative
ballot modifications. Specifically, PWFs capture the possibil-
ity that some sequence of ballot changes will make a candi-
date the final winner of the voting process. More formally,
a Possible Winner Function, denoted F , maps a score vec-
tor at time t to a set of possible winners, and has the form
F : ∆ → 2C , where ∆ is the space of all possible score
vectors.

In this paper we investigate two PWFs: the Iterative Major-
ity (IMaj), and its special sub-case Iterative Unanimity (IUn).
The possible winner function of IMaj is defined by:

FIMaj
σ (s, t) = {c ∈ C|σ − sc < t+ 1}.

That is, the difference between the score that the alterna-
tive needs in order to win, and the alternative’s score in the
next step, is bounded by time. Once the deadline is reached,
F(s, 0) is either (i) a singleton, containing the candidate with
the highest score (the winner), or (ii) empty, signifying that
the default candidate must be adopted.1

The majority threshold is σ > n
2 and the unanimous thresh-

old is σ = n. Hence, the possible winner function for IUn is
generated by setting σ = n, i.e., FIUn = FIMaj

n .
Once the set of possible winners are computed, at any given

time t ∈ [0 : τ ], the voter decides whether to change her vote
and produce a ballot bti ∈ C, i.e., state her vote at time t.
Notice that the voter’s decision is based on the best possible
winner for that voter, and on the voter’s utility function.

The voter’s best possible winner: For any W ⊂ C the
best alternative in W w.r.t. the voter’s truthful preferences ai
is denoted topi(W ) ∈ W . That is, w is the best possible
winner for voter i if voter i prefers it over any other candidate
in the possible winner set: w = topi(W ) iff for all c ∈
W \ {w} holds ai(w, c).

1With selfish utility optimisation (see below), this will entail time
dependent decision making.

The voter’s utility function: Each voter has a utility func-
tion that matches a score vector at time t to the voter’s utility:
ui : ∆ × [0 : τ ] → R. We assume that the utility function
is consistent with the voter’s truthful preferences ai for any
t ∈ τ . We will particularly emphasise the classes of lazy con-
sistent and proactive consistent utility functions. Intuitively,
a lazy consistent utility function drives the voter to change
her ballot only if a better alternative can be injected into the
set of possible winners, while a proactive consistent function
would also induce ballot change if the score of the best pos-
sible winner can be improved. Formally, these utility classes
are defined as follows.

Definition 1. A utility function ui is lazy consistent if for all
s, s′ ∈ ∆ and t ∈ [0 : τ ] the following condition holds:

ui(s, t) > ui(s
′, t) ⇐⇒ ai(w,w

′),

where w = topi(F(s, t)) and w′ = topi(F(s′, t)).

Definition 2. A utility function ui is proactive consistent if for
all s, s′ ∈ ∆ and t ∈ [0 : τ ] the following condition holds:

ui(s, t) > ui(s
′, t) ⇐⇒ ai(w,w

′)∨((w = w′) ∧ (sw > s′w))

where w = topi(F(s, t)) and w′ = topi(F(s′, t)).

We assume that all voters are selfish and myopic, and seek
to maximise their utility function ui(st, t). We further assume
that all utility functions are homogeneously either lazy con-
sistent or proactive consistent. Notice that, although here we
only use FIMaj and FIUn, CUDs can be naturally extended
to more general forms of PWFs.

The algorithm for a CUD iterative voting game is given in
Algorithm 1. Since score vectors simply accumulate ballots
from bt, we use algebraic operations between a score vector
and a ballot. That is, if s′ = s − c (respectively, s = s + c)
then s′k = sk for all k ∈ C\{c} and s′c = sc−1 (respectively,
s′c = sc + 1).

The algorithm receives as input a Possible Winner Func-
tion F , the initial time until the deadline τ . Iteratively, as
long as the deadline has not been reached: all voters calculate
the current score vector (line 3). If there is only one possible
winner, w, a decision has been reached and the game ends
(lines 4-5). The game also ends if there are no possible win-
ners (lines 7-8). If the game continues, every voter calculates
what is her best possible winner, given the current score vec-
tor (line 11). If there are ties (i.e., if a few alternatives receive
the same score), the voter selects the alternative that is ranked
highest in her truthful preferences ai. Each voter decides if
she wants to vote, the decision being based on her current
possible winners and on her utility function. Voters who want
to vote “raise their hands”, i.e., are collected into a set I (line
13). A random voter is chosen from set I (line 14). The cho-
sen voter casts her ballot (lines 15-18) and we are now one
step closer to the deadline (line 19).

In order to analyse the quality of the result of a CUD game,
features of voting processes can be adapted. One such feature
is the Additive Price of Anarchy (PoA) [Branzei et al., 2013].
We adapt the additive PoA to CUDs as follows.

Definition 3. Let a be the truthful profile of voters partic-
ipating in a CUD, b a ballot profile consistent with a (i.e.,



Algorithm 1 Consensus Under Deadline: Game Progress

Input: PWF F , deadline timeout τ
Input: Set of voters V , set of alternatives C,
Input: Truthful profile a, and utilities ui.
Initialise: Set t← τ , and bτi ← topi(C) for all i ∈ V

1: while t ≥ 0 do
2: Ballots bti are declared
3: All voters calculate st = sc(bt)
4: if F(st, t) = {w} for some w ∈ C then
5: return w as the winner . Game stops
6: end if
7: if F(st, t) = ∅ then
8: return mistrial . Game stops
9: end if

10: for i ∈ V do
11: wi ← arg max

c∈C
ui(s

t − bti + c, t− 1) . ties are

broken by ai
12: end for
13: I ← {i ∈ V |wi 6= bti}
14: j ← Random(I) . random voter choice
15: for i ∈ V do
16: bt−1i ← bti
17: end for
18: bt−1j = wj . Only j is allowed to revote
19: t← t− 1
20: end while

bi = topi(C)), and s = sc(b). Denote all candidates that
the CUD may converge to by Ĉ. Then the CUD’s additive
Price of Anarchy is

PoA+(a) = max
c∈C

sc −min
c∈Ĉ

sc

Namely, Additive PoA is the score of the least preferred al-
ternative that could become the winner of a CUD, subtracted
from the score of the truthful winner.

3.1 Theoretical Features of CUD
From the first look at Algorithm 1 it may appear that it is
incomplete, since there is no default decision after the main
loop ends. The following theorem shows that this eventuality
never occurs. That is, the loop never completes, but is always
broken by one of the game’s stopping conditions (Line 5 and
Line 8). Notice that Theorem 1 applies for both types of vot-
ers, lazy and proactive. In fact, all of our theoretical results
are applicable to both of these voter types.

Theorem 1. For FIMaj
σ , for any σ ∈ (n2 , n], and for all

consistent utility functions, CUD either stops at t = τ with
a mistrial, or at a time t ∈ [0 : τ ] with a valid alternative
declared the winner.

In light of Theorem 1, we will slightly overload the con-
cept of convergence. Convergence in general iterative voting
schemes means that the game stops at some stable point. For
CUDs, on the other hand, we will say that it converges if the
game stops by declaring some w ∈ C the winner. If the game
stopped with a mistrial, we will say that the CUD did not

converge.2
Now, having established that the algorithm always stops,

we can place a condition on game features that ensure that it
stops with a valid alternative, rather than a mistrial.

Theorem 2. Let a = (a1, . . . , an) be the truthful profile, let
τ be the deadline time, and let b be the ballot profile induced
by a, i.e. bi = topi(C). CUD stops with some w ∈ C if and
only if there is an alternative c ∈ C so that scc(b) ≥ σ − τ .

Theorem 2 essentially provides a finer bound on what the
initial scores must look like, so that CUD converges. Intu-
itively, the theorem says that for an alternative to become the
declared winner, there must be enough time for it to gather
additional support to achieve the majority threshold. How-
ever, Theorem 2 does not guarantee that a particular alterna-
tive will be declared a winner. For such a guarantee, a much
more stringent condition must be required of τ and n, as the
following theorem states.

Theorem 3. Let a = (a1, . . . , an) be the truthful profile, let
τ be the deadline time, and let b be the ballot profile induced
by a, i.e., bi = topi(C)). If there is an alternative c ∈ C so
that scc(b) ≥ max

{⌊
n
2

⌋
+ 1, σ − τ

}
then CUD stops with

c as the winner.

The following example demonstrates that the bound of
Theorem 3 is tight. That is, if the score was any lower than
Theorem 3 suggests, then, for at least some truthful profiles,
a CUD would have more than one alternative that can be de-
clared the winner.

Example 1. Let the number of voters n be even, and the num-
ber of alternatives m ≥ 2. Furthermore, assume that τ > n

2 .
Let a be such that for i ∈ [1 : n

2 ], topi(C) = c1 holds, and
for i ∈ [n2 + 1 : n], topi(C) = c2 holds. All other candi-
dates may appear in ai in any order. Then, both c1 and c2
can possibly be declared as the winner in a CUD.

Having dealt with the characterisation of alternatives that
can be declared a winner, and those that are guaranteed to be-
come a winner, we can exploit this knowledge to place some
bounds on the additive Price of Anarchy for CUDs.

Theorem 4. Let a be the truthful profile of voters participat-
ing in a CUD. The following bounds can be placed on the
additive Price of Anarchy, PoA+, depending on the ratio of
the deadline timeout τ and the number of voters n:

• If τ ≤ σ +
⌊
n
2

⌋
, then

PoA+(a) = 0. (1)

• If σ −
⌊
n
2

⌋
< τ < σ, then

PoA+(a) ≤
⌊n

2

⌋
+ τ − σ. (2)

• If τ ≥ σ, then

PoA+(a) ≤
⌊n

2

⌋
− 1. (3)

2Intuitively, a mistrial represents a deadlock or a livelock, sim-
ilar to the infinite running time of non-converging iterative voting
models in the standard sense.



Lemma 1. The last two bounds in Theorem 4 are tight. For
all τ and n that satisfy the conditions of Equations 2 and 3,
there exists a truthful profile a such that the corresponding
bound holds as an equality.

4 Experimental Features of CUD
We evaluated the behaviour of lazy and proactive voters on
four real world data sets: the Sushi data set (5000 voters, 10
candidates) [Kamishima et al., 2005], the T-shirt data set (30
voters, 11 candidates), the courses 2003 data set (146 voters,
8 candidates) and the courses 2004 data set (153 voter, 7 can-
didates). The three latter data sets are taken from the Preflib
library [Mattei and Walsh, 2013]. For a fixed number of n
(n = 10, 20 or 30) voters, we varied the time left until the
deadline: t ∈ [1, τ ]. For each experimental setting, we cre-
ated 20 random sets of voter profiles by sampling with return
from each data set. For each set of voter profiles, the experi-
ment was conducted 30,000 times.

We examined: (1) The convergence rate, i.e., the ratio of
games that converge to the total number of games within a
given sub-class (e.g. games with 10 voters, or 7 candidates);
(2) How many changes in votes are required for the process to
converge; and (3) The Additive Price of Anarchy for a process
that has converged (Definition 3).

Our theoretical results are relevant for all majority thresh-
olds σ ∈ (n2 , n]. However, to investigate the finer features
of CUDs, we fix this parameter as n, the number of voters.
Even though it means that we experimentally study an ex-
treme CUD case, i.e., unanimity, fixing σ allows us to exclude
it as a free parameter and better concentrate on studying com-
plex game features such as the Additive Price of Anarchy.

In order to conclude which voter type performs best over
multiple data sets, we followed a robust non-parametric pro-
cedure proposed by [Garcı́a et al., 2010]. This procedure al-
lows us to drop the assumption that the differences between
the voter types are normally distributed, and is thus more ade-
quate than a t-test. We first used the Friedman Aligned Ranks
test in order to reject the null hypothesis that all heuristics per-
form the same. This was followed by the Bonferroni-Dunn
test to find whether one of the heuristics performs signifi-
cantly better than other heuristics.

4.1 Results
Convergence: As Theorem 2 indicates, convergence always
occurs when there is enough time until the deadline to allow
voters to change their vote (i.e., when the number of iterations
is larger than the number of voters). The experiments reveal
that there is no difference in the convergence rate between
lazy and proactive voters. Interestingly, we find that in all ex-
perimental settings the process converges even when the time
until deadline is somewhat smaller that the number of vot-
ers, i.e., the convergence rate (estimated from 30K processes
for each experimental setting) reaches 1 with less time than
is theoretically necessary. Table 1 shows the time left until
the deadline when the convergence rate equals 1 (i.e., when
all experiments converge). Each row represents a different
number of voters, and each column a different data set. The
number of candidates in the data set is indicated in brackets.

Table 1: All processes’ convergence time
Number Courses 2004 Courses 2003 Sushi T-shirts
of voters (7) (8) (10) (11)

10 6 7 8 8
20 13 14 14 14
30 19 23 24 23

Table 2: Number of vote changes
10 voters 20 voters 30 voters

Datasets lazy proactive lazy proactive lazy proactive
Courses 2003 3.98 5.17 6.79 7.86 9.05 10.24
Courses 2004 3.55 5.73 6.38 9.51 8.89 12.71

Sushi 4 4.73 6.66 7.45 8.41 9.35
T-shirts 3.96 4.84 6.19 6.88 7.87 8.57

For example, for the courses 2004 data set (column 2), for
10 voters (row 2), all of the experiments converge when the
initial time before the deadline is τ ≥ 6. The process seems
to begin to converge faster when there are fewer candidates.
The exact impact of the candidate number on convergence
should be examined on a wider variety of data sets; we leave
this for future research. The more voters, the longer it takes
the process to converge. This is illustrated in Figure 1, on the
courses 2004 data set (similar results were obtained for the
other data sets).

Required number of vote changes: Table 2 shows, for
different data sets and varying number of voters, the nor-
malised average of vote changes required to reach consensus.
According to the Friedman test, there is a significant differ-
ence between the number of vote changes performed when
either all voters are lazy or all of them are proactive. Accord-
ing to the Bonferroni-Dunn test, proactive voters require a
significantly higher number of vote changes in order to reach
consensus. Notice that, regardless of the difference in the
number of required vote changes, the converge rate for both
voter types is the same. That is, proactive voters do not re-
quire more rounds to converge, but simply begin changing
their votes sooner, further away from the deadline.

Additive price of anarchy: The Additive Price of Anar-
chy was computed as the plurality score of the least preferred
candidate that was elected to be a unanimous winner in one
of the 30,000 experiments, subtracted from the plurality score
of the truthful winner. For example, consider 12 voters and
4 candidates and the following scores at the beginning of the
process: c1 = 2, c2 = 6, c3 = 1, c4 = 3. The truthful plural-
ity winner is c2 with a score of 6. If in one of the experiments
c3 is the unanimous winner, the additive price of anarchy is
5. If c3 does not win in any of the experiments, but in some
of them c1 wins, the price is 4. Table 3 shows the normalised
average of the additive price of anarchy. Although one can
notice a trend in the data, and see that for 20 and 30 voters
the additive price of anarchy is somewhat higher for lazy vot-
ers, we could not confirm a significant difference using the
Friedman test. Less accurate measures such as a simple t-test
reveal that the additive price of anarchy is significantly higher
for lazy voters, in the case of 30 voters. Unfortunately, over-
all, statistical analysis was inconclusive, and no significance
test could decide the issue completely.



Table 3: Additive Price of Anarchy
10 voters 20 voters 30 voters

Datasets lazy proactive lazy proactive lazy proactive
Courses 2003 0.21 0.23 0.52 0.38 0.6 0.33
Courses 2004 0.03 0.03 0.02 0.02 0.18 0.18

Sushi 0.15 0.15 0.29 0.27 0.12 0.12
T-shirts 0.69 0.27 0.38 0.35 0.51 0.3

Figure 1: Voting process convergence rate.

To conclude, it is interesting to note that although the con-
vergence rate is equal for both voter types, the required num-
ber of vote changes is higher for the proactive voters than for
the lazy voters, whereas the additive price of anarchy seems
to be lower for the proactive voters than for the lazy voters.
This may indicate that there is a tradeoff between the accu-
racy of the results and the required voter effort, at least when
the number of voters is relatively large.

5 Conclusions
When a group of individuals with different preferences is
asked to agree on a certain alternative, it would be natural to
expect that in some cases the consensus will be not reached,
even if the deadline is moderate or very far. Surprisingly,
our model of an iterative voting process with time restriction
(CUD) predicts that if there is a possibility to converge, then
a consensus will be reached.

If there is at least one candidate for whom there is enough
time to gain the missing votes (in other words, a possible win-
ner), then the process converges with such a candidate cho-
sen. Furthermore, if there is a candidate who, a priori, is the
top choice of the majority of voters, the process converges to
that very candidate, still subject to a sufficiently long dead-
line timeout. These results remain valid even for the strictest
special case of our model, Unanimity, and are confirmed (for
sanity) by our experiments.

It is obvious that not all individuals behave identically. We
define two types of voters: proactive and lazy, according to
their behaviour. Proactive voters are, in a sense, trigger-happy
to change their vote, even if just to ensure that their preferred
possible winner gets one more point. Lazy voters change their
votes only when it is necessary to do so, i.e., when their vote
is pivotal to keep a particular alternative as a possible winner.

It would be natural to interpret proactive voters as those

that actively seek consensus. This, however, is incorrect. Our
experiments show that the convergence rates of both proac-
tive and lazy voter CUDs are the same. On the other hand,
the number of vote changes until convergence is higher for
proactive voters. In a way, they are inefficient in their be-
haviour. However, there is a benefit to the proactive voters’
activism.

Our experiments looked deeper into the Additive Price of
Anarchy (PoA) as a measure of winner quality. Theoret-
ical results, while showing PoA principal bounds, do not
provide specific trade-offs. On the other hand, while re-
confirming our bounds experimentally, our experiments in-
dicate that there might be an interesting trade-off with regard
to PoA. Namely, the final winner is closer to the truthful plu-
rality winner (has lower PoA) for proactive voters, than for
lazy voters.

5.1 Future Work
Currently, our model assumes that all voters have the same
type; either all are lazy, or all are proactive. However, given
the possible tradeoff with PoA found in experiments, it would
be interesting to analyse the behaviour of mixed voter popu-
lations, e.g., how the ratio of proactive and lazy voters affects
the balance between the number of re-votes and PoA. This
could also refine our data set sufficiently for statistical tests
to unequivocally determine the significance of this tradeoff.
Furthermore, the two voter types are an initial foray. It’s more
feasible now to construct other varieties of voters.

We plan to expand our experimental base, and seek addi-
tional tradeoffs between various model parameters. For ex-
ample, we conjecture that the convergence rate is affected by
the number of alternatives, and we plan to investigate whether
the convergence rate is subject to a tradeoff between the num-
ber of alternatives, the number of voters, and the deadline
timeout.

A more challenging extension, however, would be to adapt
our model to use a general Positional Scoring Rules (PSRs),
rather than a simple Majority. E.g. veto, approval, and Borda.
These rules would allow us to express complex semantic
structures over the set of alternatives, still motivated by the
jury trial example. For example, in some cases the jurors are
asked not only to state “guilty” – “not-guilty”, but also to de-
fine the amount of damages or penalties in civil trials, or the
recommendations for sentencing in criminal trials. There are
many disagreements and discussions about the death penalty.
Thus, some jurors may wish to choose guilty, but to veto the
death penalty, while others would approve both life impris-
onment and the death penalty. In these situations, veto and
approval voting are far more appropriate than Majority.

Stepping even further away from our basic model, we need
to investigate what information about the current vote affects
a CUD’s outcome, and in what way. For example, rather than
using utilities that depend on an anonymous score vector, we
can use weights to express the fact that the opinion of certain
voters is more influential. The same technique would allow us
to impose a price on the number of times a voter changes her
mind, e.g. her vote loses influence, as being unstable. Simul-
taneous re-voting will be another research direction, being a
very non-trivial modification.
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