
Non-Myopic Voting Dynamics: An Optimistic Approach
Svetlana Obraztsova

Hebrew University of Jerusalem
svetlana.obraztsova@gmail.com

Omer Lev
University of Toronto
omerl@cs.toronto.edu

Maria Polukarov
University of Southampton

mp3@ecs.soton.ac.uk

Zinovi Rabinovich
Mobileye Vision Technologies Ltd.

zr@zinovi.net

Jeffrey S. Rosenschein
Hebrew University of Jerusalem

jeff@cs.huji.ac.il

Abstract
Iterative voting has presented, in the past few years,
a voting model in which a player participates in an
election poll, and can change his vote at any time
to influence the result. Several extensions for this
model have been considered, including some at-
tempts to handle the uncertainty that players may
face. However, all those extensions retained the
myopic assumption—that is, players change their
vote only when they believe that their move will
have an immediate effect on the outcome.
In this paper, we address this assumption by allow-
ing for certain non-myopic dynamics. Specifically,
the outlook is optimistic to a certain extent, a hori-
zon, as players change their vote if they believe that
if some other players also move, the outcome can
change. We show that players with the same hori-
zon of optimism would converge to a Nash equi-
librium under Plurality, and for Veto, even play-
ers with varying horizons of optimism always con-
verge. However, such non-myopic behavior is not
necessarily a positive feature—as we demonstrate,
in some cases it is better for the player to stick to
myopic moves.

1 Introduction
The study of processes by which multiple agents with vary-
ing individual interests can reach a collective decision, has
long been an active area of research in AI. Voting mecha-
nisms are a natural and popular tool that allows a group of
agents to make collective choices, despite the differences in
their individual preferences over available alternatives. How-
ever, one of the main stumbling blocks in this approach has
been that voters may choose to hide their truthful preferences
from the voting mechanism and seek to influence the outcome
in their favor by strategically casting their ballots. Sadly,
the famous Gibbard-Satterthwaite theorem [Gibbard, 1973;
Satterthwaite, 1975] shows that every voting system is sus-
ceptible to this behavior.

Several methods have been proposed to deal with this is-
sue. One of the common approaches has been to explore the
complexity of voting mechanisms (or rules) and their manip-
ulation [Bartholdi III et al., 1989; Xia et al., 2009]. However,

many common rules, like Plurality and Veto, are easily ma-
nipulable, yet are widely used.

Therefore, instead of seeking to avoid manipulations, an
alternative approach has been to try and understand the ulti-
mate outcome of voters’ strategic behavior in practical sce-
narios. [Meir et al., 2010] suggested examining the model of
iterative voting, in which the voters update their ballots one
after another (in an arbitrary order), if this can change the re-
sult to their benefit. Crucially, the voters are myopic—that is,
only look for immediate effects of their moves. This work has
inspired a stream of research that further developed and ex-
tended the basic iterative voting model. However, the myopic
assumption has been left untouched so far—due, in large part,
to the difficulty of effectively modeling non-myopic behavior.

In this paper, we address this assumption by considering a
bounded, non-myopic behavior where the voters may change
their ballots even if the effect of their move may not follow
immediately, but only in a few steps, after some other similar-
minded voters have made their appropriate moves. As in the
real world, our model of optimistic outlook does not assume
that the voters are omnipotent: they can see just a few steps
ahead, and they do not know the inner preferences of other
players. In a sense, this can be viewed as a sort of bounded
rationality, where the players are constrained by what we term
the “horizon of optimism” (that might be different for each
voter), limiting their tendency to look ahead.

We study the convergence of such non-myopic dynamics
to a stable state. We particularly focus on Plurality and Veto,
and assume the players use a (non-myopic optimistic) best re-
sponse function. Our choice is due to previous results show-
ing that no other scoring rule converges with best responses
even in the myopic case [Lev and Rosenschein, 2012], and
that the scope for other convergent strategies is quite lim-
ited [Obraztsova et al., 2015]. Furthermore, we explore
whether being a non-myopic optimist is a clear advantage,
and find, quite surprisingly, that the answer is negative—such
manipulations might result in a less desirable final outcome
for the manipulator.

1.1 Related Work
There is an abundant literature on the analysis of voting
mechanisms, particularly for Plurality, an overview of which
can be found in [Meir et al., 2014]. Here, we shall focus on
the iterative voting model presented in [Meir et al., 2010] and



its various extensions. This model is the most relevant to our
work, although alternative iterative models, such as [Airiau
and Endriss, 2009], have also been previously considered.

The main result in [Meir et al., 2010] shows that myopic,
best response dynamics always converge to a Nash equilib-
rium under Plurality and linear tie-breaking. The necessity
of linearity of the tie-breaking was shown in [Lev and Rosen-
schein, 2012], which also extended the convergence results to
Veto, while showing that no convergence can be achieved for
other scoring rules. Independently, the same results (with al-
ternative proofs) were demonstrated in [Reyhani and Wilson,
2012]. Based on these negative findings, [Grandi et al., 2013;
Reijngoud and Endriss, 2012] explored the possibility of de-
signing restricted response functions that would guarantee
convergence to a stable state. More recently, [Obraztsova et
al., 2015] provided a general characterization of convergent
dynamics, which, in particular, enabled the extension of pos-
itive results beyond Plurality and Veto.

Other research added different elements to the model.
Thus, [Rabinovich et al., 2015] considered iterative processes
with truth-biased (as modeled in [Dutta and Laslier, 2010;
Thompson et al., 2013; Obraztsova et al., 2013]) and lazy-
biased (as modeled in [Desmedt and Elkind, 2010]) voters,
and demonstrated quite different convergence results. The
quality of the final outcome of iterative voting was studied
in [Brânzei et al., 2013], as measured by what they termed
the “dynamic price of anarchy”. Finally, [Meir et al., 2014]
(and later, some parts expanded in [Meir, 2015]) incorporated
into the setting uncertainty about the current state, by giving
voters only an estimation of the score for each candidate and
having the voters assume that scores may vary within some
radius (which is an individual voter’s parameter). Although
this bound is different by nature from our optimism horizon,
some of the techniques used in [Meir et al., 2014] provided
insights for our work.

[Reyhani et al., 2012], in a slightly different model of un-
certainty, assume voters vote optimistically, but they handle a
very limited scenario and mostly three candidates.

2 Preliminaries
In this section, we present the notation for iterative voting
(partly adopted from [Meir et al., 2014]), and then define the
model with non-myopic players.

2.1 Notation
We denote a discrete set of x elements by [x] = {1, ..., x}.
In particular, the set of candidates is M = [m] and the set of
voters is N = [n].

Let π(M) be the set of all strict linear orders over M . A
preference profile Q ∈ (π(M))n is the vector of all voter
preferences over the candidates, so that Qi ∈ π(M) is the
(true) preference order for voter i ∈ N . In particular,Qi(c) ∈
[m] is the rank of candidate c ∈ M in Qi, and we say that
voter i ∈ N prefers candidate c ∈ M to candidate c′ ∈ M ,
denoted by c �i c′, if Qi(c) < Qi(c

′). Thus, in particular,
qi = Q−1i (1) ∈ M is the (true) top choice of voter i ∈ N .
Also, a special preference order Q̂ ∈ π(M) will be used to
define a lexicographic tie-breaking when necessary.

For a subset V ⊆ N , a partial strategic (or voting) profile,
b ∈ π(M)|V |, is a vector of ballots submitted by voters in V .
A voting profile is complete if V = N . If bi = Qi we say
that voter i ∈ V is truthful in b.

Generally, a voting rule is a function f : (π(M))n → M ,
that determines a winner of an election based on a voting pro-
file. In this paper, we will be dealing solely with a class of
scoring voting rules, characterized by a vector of parameters
(α1, . . . , αm−1, 0) where α1 ≥ α2 ≥ . . . ≥ αm−1 ≥ 0.
These parameters essentially give a numerical value to each
position within a ranking order, be that the preference order of
a voter, Qi ∈ π(M), or a submitted ballot, bi ∈ π(M). So,
the highest ranked candidate receives α1 points, the second
highest α2 points, and so on. By aggregating these points, a
winner of an election is defined as one with the highest score.

Formally, we define a score profile or state as a partial
statistic, sb, of a strategic profile b, that assigns a score to
each candidate c ∈ M , so that sb(c) =

∑
i∈V

αbi(c). A true

score of a candidate is sQ(c) =
∑
i∈N

αQi(c).

We can view sb as a vector in Nm. Given such a score vec-
tor s, the winner is the candidate with the maximal number of
points in s (where some tie-breaking order Q̂ is used in case
there are several candidates with the maximal score). In a
slight abuse of notation, if voters vote b and s is the resulting
score vector, we will use f(s) to denote the winner, and s(c)
for c ∈ M to denote the score of candidate c in the scoring
profile s. Thus, for any c 6= f(s) we have s(c) ≤ s(f(s)) and
if s(c) = s(f(s)) then Q̂(f(s)) < Q̂(c).

We will concentrate on two of the most popular scoring
rules: Plurality, defined by the vector (1, 0, . . . , 0), and Veto,
defined by the vector (1, . . . , 1, 0). For these rules, a com-
plete ranking order is superfluous as a ballot. In fact, a ballot’s
effect on the score profile (and hence, on the winner) is fully
determined by the candidate getting a point (in Plurality) or
not getting a point (in Veto). This allows us to “summarize”
ballots, and for the remainder of this paper we write, with a
slight abuse of notation, bi ∈ M for a single voter’s ballot
and b ∈M |V | for a (partial) voting profile.

In the iterative voting model, each voter i ∈ N has access
to a partial score profile sb−i , which is created from a voting
profile b (b−i are all votes except that of voter i). Each voter
strategically decides whether to change its current vote from
bi. Note that each voter i can calculate what would be the
score profile if it changed its vote to something else, as it
knows what sb−i

is. We say that ci ∈M is a better response
of voter i to a score profile sb if changing i’s vote from bi to ci
creates a scoring profile s(b−i,ci), and f(s(b−i,ci)) �i f(sb).
A better response that results in the most preferable possible
outcome for voter i is called a best response. Note that under
Veto, vetoing the current winner is always a best response:
i.e., vetoing ci is a better (and best) response to sb if ci =
f(sb), and the new winner is preferred by voter i over ci.
Under Plurality, there may be several votes that result in the
same (best) outcome for voter i; however, if i can change the
outcome for the better, they can also do so by voting directly
for the new winner, so the set of best responses is further
restricted to a single strategy ci such that ci = f(s(b−i,ci))



and for any scoring profile s(b−i,c′i)
created by replacing voter

i’s vote with c′i, ci �i f(s(b−i,c′i)
) for all c′i ∈M .

It is convenient to generalize the above definitions as a
voter response function ρ : N × Nm →M that maps a score
profile s into a ballot of each voter i. We naturally shorthand
ρi(s) = ρ(i, s). For instance, for Plurality, the best response
function, ρBR, is such that ρBRi (s) = f

(
sb−i

, ρBRi (s)
)

and
ρBRi (sb) �i f(sb−i

, c) for all c ∈M , c 6= ρBRi (sb).
We also can define stability of voting profiles and their cor-

responding states in terms of a voter response function. Let b
be a partial voting profile for V ⊆ N , and s its corresponding
score profile. Then, b is a stable voting profile and s is a sta-
ble state (w.r.t. the voter response function ρ) if for all i ∈ V
we have bi = ρi(s).

Notice that if the response function is ρBR, then the stable
state is a Nash Equilibrium in pure strategies. In general, a
voter response function is an extremely flexible tool. It can
be as simple as calculating the best response to the score pro-
file formed by votes of others, or it can take into account a
degree of uncertainty as is done in the locally dominant re-
sponse in [Meir et al., 2014]. Or, it can be non-myopic in
nature, as we present next.

2.2 Non-Myopic (Optimistic) Voting Model
An optimistic non-myopic voter considers the possibility that
their vote might prompt other players to make a similar move
(as they believe there are other similarly minded voters), thus
resulting in a better outcome in a few steps. However, such
a voter is not omnipotent, and is still limited by the common
iterative voting constraints. Thus, the underlying votes are
still opaque—the players only get to observe the score profile
at each stage, but do not know which voter has changed their
ballot. Furthermore, we use a simple metric to define how
optimistic each player is about the chance that others will fol-
low it: each voter i assumes that up to ri ∈ N voters might
make a move in support of their vote.

In this paper, we deal only with Plurality and Veto voting
rules, as only these are known to converge even with myopic
best response strategies (which can be considered as a partic-
ular case of non-myopic ones), and we do not require a com-
plex discussion of what it means that other voters move ac-
cording to a voter’s desires. There is only an option of whom
to vote for (or whom to veto), and not a more intricate divi-
sion of points. Thus, we make the following definitions of
a Non-Myopic Plurality (NMP) Response and a Non-Myopic
Veto (NMV) Response.
Definition 1 (NM-Plurality Response). Let b be a strategic
profile with its corresponding score profile s, and w = f(s)
denote the winner under s. For a given voter i ∈ N , a ballot
ci ∈M is a better non-myopic plurality response of optimism
horizon ri if the following two conditions hold:
• ci �i w;

• For s′ = s(b−i,ci) and w′ = f(s′), if Q̂(w′) > Q̂(ci),
then s′(w′) − s′(ci) ≤ ri, and if Q̂(w′) < Q̂(ci), then
s′(w′)− s′(ci) ≤ ri − 1.

A ballot ci is a best NMP response for voter i ∈ N of opti-
mism horizon ri if ci is a better NMP response for this voter

and there is no ballot c′i ∈ M that is also a better NMP re-
sponse and c′i �i ci.

Definition 2 (NM-Veto Response). Let s be a score profile
with winner w = f(s), and denote by Cwi ⊆M the subset of
all candidates that voter i prefers over w.

A ballot ci is a better non-myopic Veto response of op-
timism horizon ri if there is c ∈ Cwi and a set of voters
V ⊆ N \ {i}, |V | ≤ ri, who can veto candidates in M \ {c}
without changing the score of c, and make it a new winner.

A ballot ci is a best NMV response of optimism horizon ri
if it is a better non-myopic Veto response to make c ∈ Cwi
the winner, and there is no better non-myopic Veto response
making c′ �i c the winner.

From previous results on myopic dynamics [Meir et al.,
2010; Lev and Rosenschein, 2012], which are a particular in-
stance of Definitions 1 and 2 with all voters’ optimism hori-
zons being 0, it follows that better response strategies do not
converge to a Nash equilibrium, unless, in Plurality, they are
in a very particular structure [Meir, 2015]. Hence, we focus
on best response functions. Also, as often in previous work,
we make a natural assumption that the initial profile is the
truthful one. We do not make any restrictions on the order in
which the agents apply their moves.

We denote the policy of optimistic non-myopic best re-
sponse under Plurality by ρNMP , and under Veto by ρNMV .
For the latter, we require that if the current ballot is a best
NMV, then ρNMV favors it over other best responses. Note
that this response is coherent with the standard definition of
better/best responses, in the sense that when the optimism
horizon is zero, the non-myopic and the standard responses
coincide. In addition, we must note that a stable state with
respect to an optimistic non-myopic best response function is
not necessarily a Nash equilibrium, nor the other way around.
This is simply because ρNMP and ρNMV , unlike ρBR, are
not myopic.

Example 1. Assume that the Plurality voting rule is used, and
that we have 4 voters and 4 candidates (named a through d),
with the tie-breaking order a � b � c � d. Let the truthful
preference profile be as follows:

voter 1 : a �1 c �1 b �1 d
voter 2 : c �2 a �2 b �2 d
voter 3 : d �3 a �3 b �3 c
voter 4 : b �4 d �4 c �4 a

In the myopic version, voter 4 deviates from the truthful pro-
file by voting for d. Depending on which between voters 1
and 2 makes the next move, the winner will be a or c.

Now, suppose all voters have an optimism horizon of 2.
Since every candidate needs only one additional vote to win
the election, all the voters will stick to their strategies (expect-
ing other voters to follow them), and the winner will remain
a (which is a good result in this case, as it ensures that a
Condorcet winner is elected).

In the following sections, we present our results. Some
proofs are omitted due to space limitations.



3 Non-Myopic Plurality
In this section, we investigate the convergence of iterative vot-
ing dynamics guided by non-myopic response functions un-
der the Plurality rule. In particular, we show that non-myopic
response leads to convergence to a stable state if all voters use
the same optimism horizon (Theorem 2). Importantly, as we
observe in Theorem 1 below, ρNMP is essentially different
from other, seemingly similar, dynamics, earlier considered
in the literature, and hence, our convergence results do not
follow from previous work.
Theorem 1. The non-myopic optimistic dynamic ρNMP is
not equivalent to myopic iterative plurality [Meir et al.,
2010], local dominance plurality [Meir et al., 2014], and lo-
cal regret minimization [Meir, 2015] dynamics.
Theorem 2. Assume all voters in N participate in an it-
erative voting scenario and use a non-myopic Plurality re-
sponse function ρNMP with the same optimism horizon: ∀i ∈
N, ri = r ∈ N. Let bt denote the complete voting profile at
time t and st = sbt its corresponding score profile. Then, if
b0 = Q, there are τ ∈ N, b∗ so that ∀t > τ , bt = b∗.

Proof. Let wt = f(st) be the winner at iteration t. Also
denote by Ati = Ai(s

t) ⊆ M the set of all possible non-
myopic responses of voter i at time t > 0. At time t = 0 let
Ati also include w0 for all i ∈ N . Let U ti ⊆ M be defined
as U ti = Ati ∪ {bti}, i.e., the current ballot and the set of all
possible better NMP ballots.

We will show that two conditions hold simultaneously and
lead to convergence as required:

1. U t+1
i ⊆ U ti ;

2. st(wt) ≤ st+1(wt+1), and if st(wt) = st+1(wt+1) then
either wt = wt+1 or Q̂(wt+1) < Q̂(wt).

In other words, for all voters their corresponding sets of
better non-myopic responses do not grow, and the score of
the winner does not decrease, neither with regard to gathered
points nor with regard to the tie-breaking order.

Assume the contrary, and let us consider the first iteration
t where either condition is violated for the first time.

Case I Assume that st(wt) > st+1(wt+1). That is, at step
t, some voter i ∈ N has changed his ballot from bti = wt to
bt+1
i = c 6= wt. Notice that c is not necessarily the winner
wt+1 of the step t+ 1. It has to hold, however, that c �i wt.
Since t is the first instance when either of our conditions fail,
it has to hold that U t

′

i \U
t′−1
i = ∅ for all t′ ≤ t. In particular,

for any τ ≤ t c ∈ Uτi . Consider now the time τ < t, when
voter i has first switched his ballot to wt. Since c ∈ Uτi , one
of the following cases occurs:
• c ∈ Aτi . To switch to wt, by the definition of the best

non-myopic Plurality response, it has to hold that wt ∈
Aτi and is the best w.r.t. Qi. However, we have already
established that c �i wt. Contradiction.
• c = bτi . Again an impossibility, because it has to hold

that wt = bτ+1
i �i bτi = c (or c /∈ Uτ+1

i , reaching a
contradiction).

Notice that the reasoning above applies to the case where the
winner score persists, but its tie-breaking order is violated.

Case II Assume that for some i ∈ N U t+1
i \ U ti 6= ∅ and

st(wt) ≤ st+1(wt+1). Consider two complementary sub-
cases, bt+1

i 6= wt+1 and bt+1
i = wt+1.

• Assume that bt+1
i 6= wt+1, that is voter i does not vote

for the winner. It is easy to see that U t+1
i \ U ti 6= ∅

if and only if At+1
i \ Ati 6= ∅. Let c ∈ At+1

i \ Ati 6=
∅. Since st(wt) ≤ st+1(wt+1), this can only occur
if c has received an additional point at time t so that
st(c) < st+1(c). Therefore, there is a voter j ∈ N
so that c ∈ Atj . However, since optimism horizons are
equal, it would also entail that c ∈ Ati—a contradiction.

• Assume that bt+1
i = wt+1. If wt = wt+1 then we can

use the same reasoning as the above sub-case. Thus,
w.l.o.g., assume that wt 6= wt+1. Given that for all j ∈
N U tj \ U

t−1
j = ∅ we can easily see that wt keeps his

points at step t+ 1. As a result, for any c 6∈ Ati it has to
hold that c 6∈ At+1

i —a contradiction.

Notice that sequences {U ti } and {st(wt)} are bounded by the
empty set and the number of voters, respectively. Hence,
there is a point τ ′ after which neither the set nor the score
(including a shift along the tie-breaking order) change. In
particular, there exists Ui so that for all t > τ ′, U ti = Ui.
Therefore, there is τ > τ ′, where all voters have updated
their ballots to the best non-myopic response in Ui or their
response can not change because Ui only includes their cur-
rent vote. As a result bt = bτ and st = sτ for all t > τ .

Our proof relies on the fact that the optimism horizons are
equal, which, as we next demonstrate, is a necessary condi-
tion for convergence to a stable state.

Theorem 3. Iterative voting dynamics with non-myopic vot-
ers with different optimism horizons may not converge.

Proof. We construct a scenario with a cycle of non-myopic
responses. Let there be 5 candidates, named a through e, and
let the preferences of the first three voters be:

voter 1 : a �1 c �1 b �1 d �1 e
voter 2 : b �2 c �2 a �2 d �2 e
voter 3 : c �3 d �3 e �3 a �3 b

All remaining voters of the profile would not participate in
the cycle, but their profiles are chosen so that that the initial
score profile, s0, is given by: s0(a) = s0(b) = 4, s0(c) = 6,
s0(d) = s0(e) = 10. In addition, assume that r1 = r2 = 6

and r3 = 2, while the tie-breaking preference order, Q̂, is
a � b � c � e � d. Then the following cycle of NMP votes
exists starting from st = s0:

• Voter 3 changes his vote from c to d, leading to the scor-
ing profile st+1 = (4, 4, 5, 11, 10).

• Voters 1 and 2 change their votes in favor of c one after
the other. At both of these changes wt+1 = wt+2 =
d and has 11 points, so neither is a among the NMP
responses of voter 1, nor is b among the NMP responses
of voter 2. Hence, the score profile becomes st+3 =
(3, 3, 7, 11, 10).



• c now becomes an NMP better response for voter 3,
since only two more votes besides his own would be nec-
essary to make c the winner of the election. In fact, this
is the best NMP response for voter 3, which he makes,
turning the score profile into st+4 = (3, 3, 8, 10, 10).
• Candidates a and b can now win by tie-breaking if they

gain 6 more votes in addition to those granted by voters
1 and 2 reverting to their original ballots. In other words,
a and b are not best NMP responses of 1 and 2, respec-
tively. As a result of adopting these ballot modifications
the score again becomes st+6 = (4, 4, 6, 10, 10) = st.

The cycle is complete.

4 Non-Myopic Veto
In this section, we prove convergence of non-myopic dy-
namics for the Veto voting rule. Surprisingly, this result is
stronger than that for Plurality, showing that iterative non-
myopic Veto converges even for voters with different opti-
mism horizons.

Due to the nature of this rule, a non-myopic Veto response
is, in fact, similar to a myopic best response, requiring the
veto of the currently winning candidate. This does not mean
though that convergence stems from previous results, as a sta-
ble state in the myopic scenario is not necessarily stable in the
non-myopic model. However, our proof is similar in many
respects to the myopic case found in [Lev and Rosenschein,
2012], and we keep similar notation, where applicable.
Theorem 4. Assume all voters in N participate in an iter-
ative voting scenario and use a non-myopic Veto response
function ρNMV with individual optimism horizons. Let bt
denote the complete voting profile at time t and st = sbt its
corresponding score profile. Then, there are τ ∈ N, b∗ so
that ∀t > τ , bt = b∗.

Proof. We begin by assuming that the theorem is false, and
that there is a profile b that does not converge to a stable state.
Therefore, we know there is a cycle bt,bt+1, . . . ,bt+k for
some t, k ∈ N that repeats ad infinitum. We shall focus on
these states and mark them as G0, . . . , Gk. We shall use the
notation max(Gi) to indicate the maximal score in a partic-
ular profile (i.e., max(Gi) = maxc∈N sGi(c)). Notice that
the choice of which state isG0 is arbitrary, and the numbering
can begin at every point in the cycle.

Lemma 1. For everyGi, if j < i,max(Gi) ≤ max(Gj)+1,
and if the inequality is tight, there is only one candidate with
the score max(Gi).

Corollary 1. For every 1 ≤ i ≤ k, max(G0) + 1 ≥
max(Gi) ≥ max(G0)− 1.

Proof. This follows as a special case of Lemma 1.

Lemma 2. max(Gi) has at most two different values.

If for every Gi there is only a single winner with the max-
imal score, this means the candidate granted a point in the
move is the one becoming the winner. Hence, each voter
move is making a candidate it previously vetoed the winner.
That is, its situation is slowly deteriorating, as candidates it

ranks low become winners—this is a finite process, with at
most n · (m − 1) steps, contradicting the existence of a cy-
cle. Therefore, we must assume that there is at least one state
Gi in which there is more than one candidate with the max-
imal score. We shall call one of these states G0 (obviously,
any state with a different maximal score than max(G0) has a
maximal score of max(G0) + 1 and a single candidate with
that score, thanks to Lemma 1).

Lemma 3. For any state Gi where max(Gi) = max(G0),
we have that {c ∈ M |sGi

(c) ≥ max(Gi) − 1} = {c ∈
M |sG0

(c) ≥ max(G0) − 1} and |{c ∈ M |sGi
(c) =

max(Gi) − 1}| = |{c ∈ M |sG0
(c) = max(G0) − 1}|,

|{c ∈ M |sGi
(c) = max(Gi)}| = |{c ∈ M |sG0

(c) =
max(G0)}|. That is, the set of candidates with score
max(G0) ormax(G0)−1 is the same, as well as the number
of candidates with each of these scores.

Examining the set B of candidates for which there is a Gi
where their score is max(G0) and there is a Gj where their
score ismax(G0)−1 (this is a non-empty set, as some candi-
date is vetoed between G0 and G1), we mark as z the candi-
date ranked lowest in Q̂ (i.e., Q̂(z) ≥ Q̂(z′) for all z′ ∈ B).
Since z changes its score, there is a state Gi where z has
the score max(G0) and is vetoed, i.e., z is the winner if Gi.
This means there is no other candidate from B with the score
max(G0). As the number of candidates with max(G0) does
not change (according to Lemma 3), this means that at ev-
ery state Gj in which max(Gj) = max(G0), there is only a
single candidate from B with max(G0) points, and it always
wins. This means the candidate getting the point at every
stage is the one that becomes the winner (this is trivially true
when max(Gj) = max(G0) + 1, as there is a single win-
ner there, and they just got the “bump” to that score)—which,
as noted above, is a finite process, contradicting the endless
cycle.

5 Single Non-Myopic Voter
Previous sections have shown that the heterogeneity of opti-
mism horizons has no effect on convergence under the Veto
voting rule, but is detrimental to Plurality. In this section,
we investigate this discrepancy more closely by looking at a
special case where only one voter has a non-zero optimism
horizon. We show that this case does converge even under
Plurality. However, the final result may not necessarily be of
benefit to the optimistic player, under both rules.

Theorem 5. The iterative process with one non-myopic voter
under Plurality converges.

Proof. As the proof is very similar to that in Theorem 2,
we will provide the outline of the difference. For the sin-
gle non-myopic voter the set U ti will behave similarly to that
from the proof of Theorem 2, steadily growing smaller. On
the other hand, between the iterations where the non-myopic
voter changes his ballot, all other voters will behave myopi-
cally and their combined ballot will stabilize (see [Meir et al.,
2010]). Hence, all causes of a cycle can be the non-myopic’s



voter choosing the same strategy over and over, but the never-
enlarging set of options precludes this. This overall will lead
to the convergence of the complete voter profile.

However, as we demonstrate next, non-myopicness is not
necessarily an advantageous feature, and may lead to a sub-
optimal stable state for the non-myopic player.
Example 2. Assume that the Plurality voting rule is used,
and that we have 4 voters and 4 candidates (named a through
d), with tie-breaking order Q̂ = a � b � c � d. Let the
truthful preference profile be as follows:

voter 1 : a �1 c �1 b �1 d
voter 2 : c �2 a �2 b �2 d
voter 3 : d �3 a �3 b �3 c
voter 4 : b �4 d �4 c �4 a

Assume voter 4 is the only non-myopic voter with an opti-
mism horizon r4 = 2. It is easy to see that the truthful state is
stable under non-myopic response dynamics, and the winner
is a. On the other hand, if we consider the standard myopic
dynamic ρBR, it will lead to the equilibrium voting profile
b = (c, c, d, d). This equilibrium state is better from the per-
spective of voter 4, since c �4 a.

Furthermore, assume that we introduce a myopic bias into
ρNMP : when a voter has both a myopic and a non-myopic
move, it always prefers the myopic move. Even in this case,
the example would hold. After 2 myopic steps, when voter
4 has switched to candidate d and voter 1 has switched to
candidate c, it will be a Nash equilibrium in the ρBR based,
standard game. That is, there will be no more myopic moves
available. However, voter 4 will still have a non-myopic
move—to return to their truthful vote. As a result of voter
4 reverting to his truthful ballot, voter 1 will now have a new
myopic move to return to its own truthful vote. The initial
(truthful) state will be restored. This forms a cycle under the
myopic biased ρNMP (note though, that this is not in contra-
diction with Theorem 5 that deals with unbiased ρNMP ).

This negative effect of non-myopic dynamics is more uni-
versal and also holds for the Veto voting rule that was shown
to have stronger convergence properties than Plurality.
Example 3. Assume that the Veto voting rule is used, and
that we have 3 voters and 4 candidates (named a through d),
with the tie-breaking order Q̂ = (a � b � c � d). Let the
truthful preference profile be as follows:

voter 1 : c �1 a �1 b �1 d
voter 2 : a �2 b �2 c �2 d
voter 3 : a �3 b �3 c �3 d

Assume voter 1 is the only non-myopic voter, with optimism
horizon r1 = 1. The truthful ballot, (d, d, d), is a Nash Equi-
librium under the best response dynamics ρBR with the win-
ner being a. However, voter 1 has a non-myopic optimistic
move: to switch from vetoing d to vetoing a. This is because
it is enough that one other voter vetoes b and the best candi-
date of voter 1 (candidate c) would become the new winner.
Under ρNMV , voter 1 adopts the non-myopic optimistic bal-
lot leading to a voting profile of b = (a, d, d), and the new
winner becomes b. However, now voters 2 and 3 have no in-
centive to change their ballot and voter 1 has no non-myopic

optimistic ballots, i.e., b = (a, d, d) is a stable voting profile.
Alas, a �1 b, so voter 1 is worse off.

The above examples also provide another interesting ob-
servation: Under the Plurality rule, increasing the optimism
horizon beyond r = 2 does not effect the overall iterative be-
havior of a system with a single non-myopic voter. This is
because if a move is only viable for a larger optimism hori-
zon, no myopic voter will change accordingly, rendering it
futile. On the other hand, under the Veto rule, the increase of
the optimism horizon will have a behavioral impact.

6 Discussion
In this paper, we addressed another, complex, condition for
the convergence of iterative voting—myopic voting. While
previous work dealt with different types of tie-breaking
schemes, voting rules, best response dynamics and its restric-
tions, we have relaxed the crucial assumption that players will
only look for an immediate change to the outcome. We have
explored non-myopic dynamics while keeping the other ele-
ments of the model unchanged (apart from the voting rule),
in order to understand its effect, on its own, on the known
properties of iterative voting.

Beyond examining convergence in both Plurality and Veto
(with the surprising result that the results for Veto are stronger
than those for Plurality), we also considered the effects of
non-myopic dynamics on the outcome of the iterative pro-
cess, and found that it is not necessarily beneficial for non-
myopic voters. In this direction, it would also be interesting
to study the effects of various numbers of non-myopic voters
and of their horizons of optimism on the final outcome.

Moreover, as we explored a fundamentally optimistic out-
look, one can consider other approaches to non-myopic
strategies. While all non-myopic strategies have an optimistic
component, as they make an assumption about the future,
some may have a different goal. For example, voters may
try to prevent their least favorite option within the horizon of
optimism from winning.

Another interesting direction to explore in further research
is the possibility and effects of relaxing the opacity of in-
formation to the players. While limited knowledge, when
voters are only aware of the candidates’ total scores at each
state, makes sense in many scenarios, there are also situa-
tions where more information may be available. For exam-
ple, it may be possible to estimate the distribution of prefer-
ences in the population of voters using pre-election polls, or,
in settings with few voters, the iterative process may allow
the voters to learn about others’ preferences from the moves
they made in previous iterations. Such knowledge may enable
the players to make more subtly optimistic, even farsighted,
moves.

Finally, a potential extension to our model is to endow
the players with cardinal utilities for each candidate. This
would impose a greater degree of nuance in voters’ moves, as
they would have to decide between supporting candidates re-
quiring fewer additional vote changes to become victors, and
more preferable candidates that have a longer horizon to win.
Similar settings have been studied in general games, which
may aid research in this direction.
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