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Abstract
Distributed Constraint Optimization Problems (DCOPs)
offer a powerful approach for the description and resolu-
tion of cooperative multi-agent problems. In such model
a group of agents coordinate their actions to optimize a
global objective function, taking into account their pref-
erences and constraints. A core limitation of this model
is the assumption that all agents’ preferences are speci-
fied a priori. Unfortunately, in a number of application
domains, such knowledge is not assumed, and these val-
ues may become available only after being elicited from
users in the domain. Motivated by the current develop-
ments in smart buildings we explore the effect of pref-
erence elicitation in scheduling smart appliances within
a network of interconnected buildings, with the goal of
reducing the users’ energy consumption costs, while tak-
ing into account the comfort of the occupants. This paper
makes the following contributions: (1) It introduces the
Smart Building Devices Scheduling (SBDS) problem and
maps it as a DCOP; (2) It proposes a general model for
preference elicitation in DCOPs; (3) and It empirically
evaluates the effect of several heuristics to select a set of
preferences to elicit in SBDS problems.

1 Introduction
The importance of constraint optimization is outlined by
the impact of its application in a range of Constraint Op-
timization Problems (COPs), such as supply chain manage-
ment [Rodrigues and Magatao, 2007] and roster schedul-
ing [Abdennadher and Schlenker, 1999]. When resources
are distributed among a set of autonomous agents and com-
munication among the agents are restricted, COPs take
the form of Distributed Constraint Optimization Problems
(DCOPs) [Modi, 2003; Yeoh and Yokoo, 2012; Fioretto et
al., 2016a]. In this context, agents coordinate their value as-
signments to minimize the overall sum of resulting constraint
costs. DCOPs are suitable to model problems that are dis-
tributed in nature and where a collection of agents attempts
to optimize a global objective within the confines of local-
ized communication. They have been employed to model
various distributed optimization problems, such as meeting
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scheduling [Yeoh et al., 2010; Zivan et al., 2014], sensor net-
works [Farinelli et al., 2008], coalition formation [Ueda et
al., 2010], and smart grids [Miller et al., 2012].

The field of DCOP has matured significantly over the
past decade since its inception [Modi et al., 2005]. DCOP
researchers have proposed a wide variety of solution ap-
proaches, from distributed search-based solvers [Modi et al.,
2005; Maheswaran et al., 2004; Yeoh et al., 2010] to dis-
tributed inference-based solvers [Petcu and Faltings, 2005;
Vinyals et al., 2011], as well as algorithms that use GPUs
[Fioretto et al., 2014] and logic programming [Le et al., 2015;
2016] formulations. One of the core limitations of all these
approaches is that they assume that the constraint costs in a
DCOP are known a priori. Unfortunately, in some application
domains, these costs are only known after they are queried or
elicited from experts or users in the domain.

One such application is the smart device scheduling prob-
lem in a network of smart buildings, where the goal is to
schedule a number of smart devices (e.g., smart thermostats,
smart lightbulbs, smart washers, etc.) distributed across a
network of smart buildings in such a way that optimizes the
preferences of occupants in those buildings subject to a larger
constraint that the peak energy demand in the network does
not exceed a energy utility defined limit. We further describe
this motivating application in more detail in Section 3.

DCOPs are a natural framework to represent this problem
as each building can be represented as an agent and the pref-
erences of occupants can be represented as constraints. Fur-
thermore, due to privacy reasons, it is preferred that the pref-
erences of each occupant are not revealed to other occupants.
The DCOP formulation allows the preservation of such pri-
vacy since agents are only aware of constraints that they are
involved in.

A priori knowledge on the constraint costs is unfeasible in
our motivating application. A key challenge is thus in the
elicitation of user preferences to populate the constraint cost
tables. Due to the infeasibility of eliciting preferences to pop-
ulate all preferences, in this paper, we introduce the prefer-
ence elicitation problem for DCOPs, which studies how to
select a subset of k cost tables to elicit from each agent with
the goal of choosing those having a large impact on the over-
all solution quality. We propose several methods to select this
subset of cost tables to elicit, based on the notion of partial
orderings. Our preliminary results illustrate the effectiveness
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Figure 1: Example DCOP.

of our approach in contrast to a baseline evaluator that ran-
domly selects cost tables to elicit.

2 Background: Distributed Constraint
Optimization Problems

A Distributed Constraint Optimization Problem (DCOP) is a
tuple P = 〈X ,D,F ,A, α〉, where:
• X ={x1, . . . , xn} is a set of variables;
• D={D1, . . . , Dn} is a set of finite domains (i.e., Di is the

domain of xi);
• F = {f1, . . . , fe} is a set of constraints (also called cost

tables in this work), where fi : "xj∈xfi Di → R+
0 ∪ {⊥}

maps each combination of value assignments of the vari-
ables xfi⊆X in the scope of the function to a non-negative
cost if the combination is allowed; ⊥ is a special element
used to denote that a given combination of value assign-
ments is not allowed;

• A={a1, . . . , ap} is a set of agents;
• and α : X → A is a function that maps each variable to

one agent.
A solution σ is a value assignment to a set of variables

Xσ ⊆X that is consistent with the variables’ domains. The
cost function FP(σ) =

∑
f∈F,xf⊆Xσ f(σ) is the sum of the

costs of all the applicable constraints in σ. A solution is said
to be complete if Xσ = X is the value assignment for all
variables. The goal is to find an optimal complete solution
x∗ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai∈A, Li={xj ∈ X |α(xj)=
ai} is the set of its local variables. Ii = {xj ∈ Li | ∃xk ∈
X ∧ ∃fs∈F : α(xk) 6= ai ∧ {xj , xk}⊆xfs} is the set of its
interface variables.

Definition 2 For each agent ai∈A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where
Fi={fj ∈F | xfj ⊆Li}.
Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the cost table of all constraints; all con-
straints have the same cost table for simplicity.

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are inter-
ested in scheduling devices in smart buildings in a decentral-
ized way, where users are responsible for the schedule of the
devices in their building, under the assumption that all the
users cooperate to ensure that the total energy consumption
of the neighborhood is within some limit defined by the en-
ergy provider such as a energy utility company.

We now provide a description of the Smart Building De-
vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi ∈ H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that
the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . ,H} to denote the set of time
intervals and θ : T → R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started). We use
szj and δzj to denote, respectively, the start time and duration
(expressed in multiples of time intervals) of device zj ∈ Zi.

The energy consumption of each device zj is ρzj kWh for
each hour that it is on. It will not consume any energy if it is
off. We use the indicator function φtzj to indicate the state of
the device zj at time step t, and whose value is 1 exclusively
when the device zj is on at time step t:

φtzj =

{
1 if szj ≤ t ∧ szj + δzj ≥ t
0 otherwise

Additionally, the execution of a device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use Cti to denote the aggregated cost of the building
hi at time step t, expressed as:

Cti = P ti · θ(t), (1)

where
P ti =

∑

zj∈Zi
φtzj · ρzj (2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µtzj ∈ R describes the degree of
dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U ti to denote the aggregated
discomfort associated to the user in building hi at time step t:

U ti =
∑

zj∈Zi
φtzj · µzj (t). (3)
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X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all
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Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-
ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-
vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj

and �zj
to denote the start time and duration (expressed

in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �t

zj
to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�t
zj

=

⇢
1 if szj

 t ^ szj
+ �zj

� t
0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use Ct

i to denote the aggregated cost of the building
hi at time step t, expressed as:

Ct
i = P t

i · ✓(t), (1)

where
P t

i =
X

zj2Zi

�t
zj

· ⇢zj
(2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µt

zj
2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U t
i =

X

zj2Zi

�t
zj

· µzj
(t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H
↵c · Ct

i + ↵u · U t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj
 T � �zj

8hi 2 H, zj 2 Zi (5)
X

t2T
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zj
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X
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i  `t 8t 2 T (7)
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Figure 2: Smart Building Devices Scheduling illustration: (a) A network of smart buildings; (b) the set of smart devices Zi
controlled within a smart building hi; and (c) an example of discomfort values (top) and costs (bottom) for a schedule of the
devices in a building.

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single one through the use of a weighted sum:

minimize
∑

t∈T

∑

hi∈H
αc · Cti + αu · U ti (4)

where αc and αu are weights in the open interval (0, 1) ⊆ R
such that αc + αu = 1. The SBDS problem is also subject to
the following constraints:

1 ≤ szj ≤ T − δzj ∀hi ∈ H, zj ∈ Zi (5)
∑

t∈T
φtzj = δzj ∀hi ∈ H, zj ∈ Zi (6)

∑

hi∈H
P ti ≤ `t ∀t ∈ T (7)

where `t ∈ R+ is the maximum allowed total energy con-
sumed by all the buildings in the neighborhood at time step
t. This constraint is typically imposed by the energy provider
and is adopted to guarantee reliable electricity delivery. Con-
straint (5) expresses the lower and upper bounds for the start
time associated to the schedule of each device. Constraint (6)
ensures that the devices are scheduled and that they are ex-
ecuted for exactly their duration time. Constraint (7) rep-
resents the feasibility constraint and ensures that the total
amount of energy consumed by the buildings in the neigh-
borhood does not exceeds the maximum allowed threshold.
Note that, in this work, we consider the devices to be abstract
entities. Thus, scheduling a single device twice within the
time horizon can be treated as two separate devices.

Figure 2 provides an illustration of the SBDS problem (a-
b), and an example of the devices schedule for a building (c).

3.1 Preference Elicitation
While, in general, the real-time pricing schema θ that de-
fines the cost per kWh of energy consumed and the energy

consumption ρzj of each device zj are well-defined concepts
and can be easily acquired or modeled, the preferences on the
user’s discomfort levels µzj (t) on scheduling a device zj at
time step t are more subjective and, thus, more difficult to
model explicitly.

We foresee two approaches to acquire these preferences:
(1) eliciting them directly from the user and (2) estimating
them based on historical preferences or from preferences of
similar users. While the former method will be more accu-
rate and reliable, it is cumbersome for the user to enter their
preference for every device zj at every time step t of the prob-
lem. Therefore, in this paper, we assume that a combination
of the two approaches will be used, where a subset of prefer-
ences will be elicited and the remaining preferences will be
estimated from historical sources or similar users.

4 DCOP Representation
We now describe how to map the SBDS problem to a DCOP:
• AGENTS: Each building hi ∈ H is mapped to an agent
ai ∈ A in the DCOP.

• VARIABLES: For each building hi ∈ H, there are two
types of variables for each agent:
• The start time szj of each device zj is mapped to a deci-

sion variable xj .
• The indicator variables φtzj of each device zj and time

step t is mapped to an auxiliary variable x′j .
1

• The aggregated energy consumed by all the devices in
the building at each time step t is mapped to an auxiliary
interface variable x′′j .

All these variables are controlled by agent ai and, thus,
α(xj) = α(x′j) = α(x′′j ) = ai for all decision variables xj
and auxiliary variables x′j and x′′j .

• DOMAINS: The domains of the decision and auxiliary vari-
ables are as follows:

1One can avoid to include such auxiliary variables by encoding
the costs and discomfort values associated to the entire execution of
a device in the problem constraints.



• The domain of decision variable xj is the restricted set
T as defined by Constraint (5).
• The domain of auxiliary variable x′j is the set {0, 1}.
• The domain of auxiliary variable x′′j is the set
{0, . . . ,∑zj∈Zi ρzj}.

• CONSTRAINTS: There are three types of constraints for
each agent:
• Local soft constraints (i.e., constraints that involve only

variables controlled by the agent) whose costs corre-
spond to the weighted summation of monetary costs and
user discomfort, as defined by the objective function in
Equation (4).
• Local hard constraints that enforce Constraint (6).
• Global hard constraints (i.e., constraints that involve

variables controlled by different agents) that restrict the
set of feasible aggregated energy consumption to be
within the maximum allowed total energy consumed by
all buildings, as defined by Constraint (7). Feasible ag-
gregated consumptions incur a cost of 0 while infeasi-
ble aggregated consumptions incur a cost of ⊥, which
means that they are prohibited.

Since the DCOP enforces all Constraints (5), (6) and (7),
an optimal complete DCOP solution that minimizes the sum
of costs over all (local soft) constraints is exactly an optimal
complete solution to the corresponding SBDS problem.

5 Preference Elicitation in DCOPs
As introduced in Section 3.1, one of the key drawbacks of
existing DCOP approaches is that they assume that the cost
tables of all constraints are known a priori, which is not the
case for a number of real-world applications, including the
SBDS problem. Due to the infeasibility of eliciting prefer-
ences to populate all cost tables, in this paper, we perform a
preliminary study on how to choose a subset of k cost tables
to populate. We first describe this optimization problem, and
thus describe our proposed techniques.

Let P̂ = 〈X ,D, F̂ ,A, α〉 denote the DCOP whose con-
straints F̂ may have inaccurate cost tables. The constraints
F̂ = Fr ∪ Fu are composed of revealed constraints Fr,
whose cost tables are accurately revealed and reflect the ac-
tual user preferences, and uncertain constraints Fu, whose
cost tables are unrevealed and must be estimated from histor-
ical sources or similar users. All constraints that depend only
on external parameters that are easily obtained are revealed
constraints. We refer to this problem as the uncertain DCOP.

To abstract out the cost estimation in the uncertain con-
straints, we model those costs as random variables following
a Normal distribution (e.g., one could fit a Normal distribu-
tion to the historical data).2 Specifically, for each constraint
f ∈ Fu, the cost entry for the combination of values ϕ in its
cost table is a random variable Yϕ obeying the Normal distri-
bution N (µ̂ϕ, σ̂

2
ϕ) with mean µ̂ϕ and standard deviation σ̂ϕ.

Next, let P = 〈X ,D,F ,A, α〉 denote the DCOP whose
constraints F have accurate cost tables, that is, they de-
pend only on external parameters that are easily obtained

2We leave the study of accurate cost estimation to future work.

(e.g., price function θ and energy consumption of devices
ρzj ) or they depend on user preferences that are accurately
obtained through an oracle. Here, we assume that the costs
of each constraint f ∈ F that depend on user preferences are
sampled from the same Normal distributionN (µ̂ϕ, σ̂

2
ϕ) in the

corresponding uncertain DCOP. Therefore, the accurate costs
are most likely the mean µ̂ϕ of the distribution but may have
variations due to intricate subjective factors. We refer to this
problem as the oracle DCOP.

5.1 Preference Elicitation Problem
The preference elicitation problem in DCOPs is formalized
as follows: Given an oracle DCOP P and a value k ∈ N, con-
struct an uncertain DCOP P̂ that reveals only k constraints
per agent (i.e., |Fr| = k · |A|) and minimizes the error:

εP̂ = E
[
|FP̂(x̂∗)− FP(x∗)|

]
(8)

where x̂∗ is the optimal solution for a realization of the un-
certain DCOP P̂ , and x∗ is the optimal complete solution for
the oracle DCOP P . A realization of an uncertain DCOP P̂ is
a DCOP (with no uncertainty), whose costs of each combina-
tions of values ϕ in each uncertain constraint, are realization
of the random variables Yϕ of P̂ .

5.2 Preference Elicitation Heuristics
Note that the possible numbers of uncertain DCOPs that can
be generated is

( |F|
k·|A|

)
. Since solving each DCOP is NP-hard

[Modi, 2003], the preference elicitation problem is a particu-
larly challenging one. Thus, we propose five heuristic meth-
ods to determine the subset of functions to reveal, so to con-
struct an uncertain problem P̂ .

Let us first introduce a general concept of partial ordering
between cost tables of uncertain constraints.
Definition 3 Given a partial ordering ◦ on the uncertain set
Fu⊂F̂ , and two cost tables of uncertain constraints fi, fj ∈
Fu, we say that fi dominates fj according to ◦ if fi �◦ fj .

We now introduce the heuristic methods to choose the first
k uncertain constraints ordered by the relation �◦.
Average of the Expected Costs
If the ordering ◦ = EE[·] is done according to the average
of the expected costs of the uncertain constraints, then, given
two unknown functions fi, fj ∈Fu, we say that fi�EE fj iff :

EE[fi] ≤ EE[fj ]

where
EE[fi] =

1

|Σfix |
∑

ϕ∈Σ
fi
x

µ̂ϕ

and Σfix is the set of all the possible value assignments for the
variables in xfi .

Average of the Variance
If the ordering ◦=Eπ[·] is done according to the average vari-
ance of the uncertain constraints, then, given two unknown
functions fi, fj ∈Fu, we say that fi�Eπ fj iff :

Eπ[fi] ≤ Eπ[fj ]



where
Eπ[fi] =

1

|Σfix |
∑

ϕ∈Σ
fi
x

σ̂2
ϕ.

Variance of the Expected Costs
If the ordering ◦=πE[·] is done according to the variance of
expected costs of the uncertain constraints, then, given two
unknown functions fi, fj ∈Fu, we say that fi�πE fj iff :

πE[fi] ≤ πE[fj ]

where
πE[fi] =

1

|Σfix |
∑

ϕ∈Σ
fi
x

(µ̂ϕ − EE[fi])
2

Variance of the Variance
If the ordering ◦ = ππ[·] is done according to the variance
of variance of the uncertain constraints, then, given two un-
known functions fi, fj ∈Fu, we say that fi�ππ fj iff :

ππ[fi] ≤ ππ[fj ]

where
ππ[fi] =

1

|Σfix |
∑

ϕ∈Σ
fi
x

(
σ̂2
ϕ − Eπ[fi]

)2

Second-Order Stochastic Dominance
In general, it is well-known (particularly in financial do-
mains) that maximizing cost without considering risk does
not yield good solutions in risky environments. To incor-
porate the notion of risk while ordering the uncertain con-
straints, we use the concept of second-order stochastic domi-
nance [Levy, 1998].

If the ordering ◦ = SD[·] is done according to the stochas-
tic dominance criteria, then, given two unknown functions
fi, fj ∈ Fu, we say that fi �SD fj iff :

x∑

m=1

(fi(m)− fj(m)) ≥ 0

for all values of x ≤ |Σfix |, where fi(m) = µ̂t is the expected
cost of the m-th value assignment for the variables in xfi .

Notice however, that both functions may not stochastically
dominate each other. Furthermore, this ordering is only de-
fined if the number of possible value assignments for both
unknown functions are identical, i.e., |Σfix | = |Σfjx |. In our
DCOP model of the SBDS problem, this is the case if the
horizon to schedule all devices are identical.

6 Related Work
The problem of scheduling devices in smart buildings has
recently attracted large interest within the AI and the smart
grid communities. Georgievski et al. [2012] proposed a sys-
tem to monitor and control electrical appliances in a building
with the objective of reducing the energy bill costs. Scott
et al. [2013] have also studied a centralized online stochas-
tic optimization approach for a home automation system as a
demand response mechanism, where the uncertainty comes
from future prices, occupant behavior, and environmental

conditions. Sou et al. [2011] proposed a Mixed Integer Lin-
ear Program (MILP) to address smart appliance scheduling
problem using low granularity for the technical specification
of smart appliance (e.g., they distinguish in the various en-
ergy phases carried in a dishwasher, or washing machine cy-
cle). However, due to the high complexity of the problem
they suggest to adopt suboptimal solutions to reduce the over-
all solving time. Another proposal to speed up the resolution
time of a MILP formulation for scheduling smart devices was
presented by Tsui and Chan [2012]. The authors study a re-
laxation of a MILP formulation for the automatic load man-
agement of appliances in a smart home as a convex program
optimization, which speeds up the resolution process, how-
ever they provide no guarantees on the solution quality with
respect to the original problem. Unlike our approach, these
proposals focus on single building problems, and/or are in-
herently centralized.

Scott and Thiébaux [2015] have also studied a distributed
demand response mechanism for the scheduling of shiftable
loads in smart homes, within a non-convex optimization con-
text, and show that simple approaches—even if not guaran-
teed to find feasible solutions—can be effective. However,
they do not address the occupant’s comfort while computing
the appliances policies and focus exclusively on load man-
agement.

The problem of preference elicitation in DCOPs is related
to a class of DCOPs where agents have partial knowledge
on the costs of their constraints and, therefore, they may dis-
cover the unknown costs via exploration [Taylor et al., 2011;
Zivan et al., 2015]. In this context, agents must balance
the coordinated exploration of the unknown environment and
the exploitation of the known portion of the rewards, in or-
der to optimize the global objective [Stranders et al., 2012].
Another orthogonal related DCOP model is the problem
where costs are sampled from probability distribution func-
tions [Nguyen et al., 2014]. In such a problem, agents seek
to minimize either the worst-case regret [Wu and Jennings,
2014] or the expected regret [Le et al., 2016].

7 Empirical Evaluation
We evaluate the effect of preference elicitation in DCOPs in
synthetic SBDS problems. In our experiment we consider
|H| = 10 buildings, each controlling |Zi| = 10 smart de-
vices. The list of smart devices adopted (i.e., Z = ∪iZi) is
illustrated in Table 1, including their power consumption ρzj
(in kWh) and duration δj (in minutes) for each device zj ∈ Z .
The device specifics (i.e., duration and power consumption)
follow those by Zhang et al. [2013].

We populate the set of smart devices Zi of each building
by randomly sampling 10 elements from Z . Thus, a building
might control multiple devices of the same type. In our ex-
periment, we set a time horizon H = 12 with increments of
30 minutes. The values for the real time pricing schema θ(t)
are summarized in Table 2.

For each building and each device zj , the user preferences
on the discomfort values µtzj are generated from a Normal
distribution N (µ̂, σ̂2), with µ̂ randomly sampled in [1, 100],
and σ̂2 in [1,

√
µ̂

2 ]. Finally, the weights αc and αu of the ob-



Device Power (kWh) Duration (min.)
dish washer 0.75 120
washing machine 1.20 90
dryer 2.50 60
cooker hob 3.0 30
cooker oven 5.0 30
microwave 1.70 30
laptop 0.10 120
desktop computer 0.30 180
vacuum cleaner 1.20 30
fridge 0.30 360
electrical vehicle 3.50 180

Table 1: Smart devices with their power consumption and
schedule duration.

Time (min.) [0-60] [60-120] [120-180] [180-240] [240-300] [300-360]
RTP ($/kWh) 0.172 0.161 0.191 0.145 0.149 0.174

Table 2: Real time pricing schema.

jective function defined in Equation (4) are set to 0.5. These
settings are employed to create both an oracle DCOP and the
corresponding uncertain DCOP, as described in Section 5, ex-
cept that the values of the constraints of the uncertain DCOPs
are not realized (i.e., they are distributions). All the problems
are modeled and solved optimally using MiniZinc [Nether-
cote et al., 2007] on an Intel Core i7-3770 CPU 3.40GHz
with16 GB of RAM.

Figure 3 illustrates the results on the error corresponding
to the preference elicitation problem for various number k of
constraints to elicit per agent, and with respect to the par-
tial orderings: Average of the Expected Costs (AE), Average
of the Variance (AV), Variance of the Expected Costs (VE),
Variance of the Variance (VV), and Second-Order Stochastic
Dominance (SD), as described in Section 5.2. Additionally,
we employ a Random (RN) heuristic, as baseline for compar-
ison, which chooses the k constraints to elicit per agent at ran-
dom. We report the normalized error εP̂

FP(x∗) , where εP̂ is the
error as defined by Equation (8). An accurate computation of
this error requires us to generate all possible realizations for
the uncertain DCOPs. Due to the complexity of such task,
we create m = 50 realizations of the uncertain DCOPs and
compute the error εP̂ in this reduced sampled space. We con-
trol k so that the percentage of the constraints elicited from
the oracle DCOP ( |Fe||F| ·100) varies from 20% to 80%. For
each setting, the values of the uncertain constraints Fu of the
resulting uncertain DCOP obey the same distributions used
to model the corresponding realizations in the oracle DCOP.
The results are averaged over 50 randomly generated SBDS
problem instances. We make the following observations:
• As expected, for all the partial orderings tested, the error

decreases as the number of cost tables to elicit increases.
• AE and AV outperform all other heuristics.

8 Conclusions
Motivated by the current developments in smart buildings,
we explore the effect of preference elicitation in scheduling
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Figure 3: Preference Elicitation Results.

smart appliances within a network of interconnected build-
ings, with the goal of reducing the users’ energy consump-
tion costs, while taking into account the comfort of the occu-
pants. After modeling this problem as a DCOP, we propose
a general model for preference elicitation in DCOPs. Due to
the infeasibility of eliciting preferences to populate all DCOP
cost tables, we proposed several methods to select a subset of
k cost tables to elicit per agent, based on the notion of partial
orderings. Our preliminary results show that our best meth-
ods are more accurate than a baseline method that randomly
selects cost tables to elicit.

Future work will focus on an extensive analysis of the
proposed methods on a more realistic setting for the SBDS
agents as well as incorporating state-of-the-art methods for
predicting energy consumption in homes [Truong et al., 2013;
Lachut et al., 2014].
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